A334238 Rows n in A334184 that are not unimodal.
57, 63, 171, 258, 266, 294, 301, 329, 342, 343, 354, 361, 377, 378, 379, 381, 387, 399, 423, 437, 441, 462, 463, 469, 474, 481, 483, 489, 506, 513, 529, 567, 603, 621, 642, 643, 689, 798, 817, 889, 903, 931, 978, 1026, 1083, 1141, 1143, 1161, 1169, 1197, 1204
Offset: 1
Keywords
Examples
Example: n = 57 is the smallest number for which rank levels of antichains is not unimodal, under the poset formed from distinct terms resulting from the mapping f(n) := n -> n - n/p across primes p | n. Hasse diagram Row 57 of A334184 ------------- ----------------- 57 1 | \ | \ 54 38 2 | \/ \ | /\ \ 36 27 19 3 | \ | / | \| / 24 18 2 /| /| / | / | 16 12 9 3 | /| / |/ |_/ 8 6 2 | /| |/ | 4 3 2 | / |/ 2 1 | | 1 1
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
- Michael De Vlieger Hasse diagrams of the 24 least terms of this sequence.
Crossrefs
Cf. A334184.
Programs
-
Mathematica
Select[Range[2, 600], Function[k, Which[IntegerQ@ Log2@ k, False, And[PrimeQ@ k, IntegerQ@ Log2[k - 1]], False, True, ! AllTrue[Drop[#, FirstPosition[#, _?(# < 0 &)][[1]] - 1 ], # <= 0 &] &@ Sign@ Differences@ Map[Length@ Union@ # &, Transpose@ If[k == 1, {{1}}, NestWhile[If[Length[#] == 0, Map[{k, #} &, # - # /FactorInteger[#][[All, 1]] ], Union[Join @@ Map[Function[{w, n}, Map[Append[w, If[n == 0, 0, n - n/#]] &, FactorInteger[n][[All, 1]] ]] @@ {#, Last@ #} &, #]] ] &, k, If[ListQ[#], AllTrue[#, Last[#] > 1 &], # > 1] &]]]]]]
Comments