A334287 Smallest full reptend prime p such that there is a gap of exactly 2n between p and the next full reptend prime, or 0 if no such prime exists.
17, 19, 23, 491, 7, 47, 419, 577, 29, 0, 1789, 233, 461, 433, 193, 509, 823, 61, 1979, 1327, 659, 269, 11503, 1381, 887, 14251, 3167, 8297, 3469, 0, 7247, 15073, 2473, 743, 19309, 4349, 21503, 12823, 14939, 3863, 5419, 6389, 24137, 27211, 10343, 13577, 18979
Offset: 1
Keywords
Examples
a(9) = 29 because there is a gap of 2*9 = 18 between 29 and the next full reptend prime 47. a(10) = 0 because no gap of 2*10 = 20 exists between full reptend primes.
Links
- Martin Raab, Table of n, a(n) for n = 1..583
- Eric Weisstein's World of Mathematics, Full Reptend Prime
Crossrefs
Cf. A001913.
Programs
-
PARI
is(p) = Mod(10, p)^(p\2)==-1 && znorder(Mod(10, p))+1==p; isok(p, n) = {if (! is(p), return (0)); if (isprime(p+n) && is(p+n), forprime(q=p+1, p+n-1, if (is(q), return (0));); return (1););} a(n) = {n *= 2; if ((n % 40) == 20, return (0)); my (p = 2); while (! isok(p, n), p = nextprime(p+1)); p;} \\ Michel Marcus, Apr 22 2020
Comments