A334296 Smallest k such that (2k+1)*2^n+1 is prime.
0, 0, 0, 2, 0, 1, 1, 2, 0, 7, 6, 4, 1, 2, 3, 2, 0, 4, 1, 5, 3, 5, 12, 22, 22, 2, 3, 7, 6, 11, 1, 17, 21, 4, 37, 29, 1, 7, 7, 2, 13, 1, 4, 4, 7, 17, 9, 13, 7, 11, 3, 8, 3, 25, 24, 2, 13, 14, 49, 13, 15, 26, 52, 4, 12, 4, 1, 4, 15, 11, 19, 19, 63, 11, 33, 2, 46
Offset: 0
Keywords
Examples
a(0)=a(1)=a(2)=0 because 2^0+1=2, 2^1+1=3, 2^2+1=5 are prime. a(3)=2 because 2^8+1=9 and 3*2^8+1=25 are not prime, but 5*2^8+1=41 is.
Links
- Robert Israel, Table of n, a(n) for n = 0..2000
Programs
-
Maple
f:= proc(n) local t, v, k; t:= 2^n; v:= -t+1; for k from 0 do v:= v+2*t; if isprime(v) then return k fi od end proc: map(f, [$0..100]); # Robert Israel, Jul 14 2020
-
Mathematica
a[n_] := Block[{k = 0}, While[! PrimeQ[(2 k + 1) 2^n + 1], k++]; k]; Array[a, 77, 0] (* Giovanni Resta, May 08 2020 *)
-
PARI
a(n) = my(k=0); while (!isprime((2*k+1)*2^n+1), k++); k; \\ Michel Marcus, Apr 30 2020
-
Python
from itertools import count from sympy import isprime def pow2p1() : # generates the sequence for n in count() : for k in count() : if isprime(((2*k+1)<
Comments