A334301 Irregular triangle read by rows where row k is the k-th integer partition, if partitions are sorted first by sum, then by length, and finally lexicographically.
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 5, 1, 2, 2, 2, 3, 2, 1, 4, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 6, 1, 3, 2, 2
Offset: 0
Examples
The sequence of all partitions in Abramowitz-Stegun order begins: () (41) (21111) (31111) (3221) (1) (221) (111111) (211111) (3311) (2) (311) (7) (1111111) (4211) (11) (2111) (43) (8) (5111) (3) (11111) (52) (44) (22211) (21) (6) (61) (53) (32111) (111) (33) (322) (62) (41111) (4) (42) (331) (71) (221111) (22) (51) (421) (332) (311111) (31) (222) (511) (422) (2111111) (211) (321) (2221) (431) (11111111) (1111) (411) (3211) (521) (9) (5) (2211) (4111) (611) (54) (32) (3111) (22111) (2222) (63) This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows. 0 (1) (2) (1,1) (3) (2,1) (1,1,1) (4) (2,2) (3,1) (2,1,1) (1,1,1,1) (5) (3,2) (4,1) (2,2,1) (3,1,1) (2,1,1,1) (1,1,1,1,1) Showing partitions as their Heinz numbers (see A334433) gives: 1 2 3 4 5 6 8 7 9 10 12 16 11 15 14 18 20 24 32 13 25 21 22 27 30 28 36 40 48 64 17 35 33 26 45 50 42 44 54 60 56 72 80 96 128
Links
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
Lexicographically ordered reversed partitions are A026791.
The version for reversed partitions (sum/length/lex) is A036036.
Row lengths are A036043.
Reverse-lexicographically ordered partitions are A080577.
The version for compositions is A124734.
Lexicographically ordered partitions are A193073.
Sorting first by sum, then by Heinz number gives A215366.
Reversed partitions under the dual ordering (sum/length/revlex) are A334302.
Taking Heinz numbers gives A334433.
Programs
-
Mathematica
Join@@Table[Sort[IntegerPartitions[n]],{n,0,8}]
Comments