A334345 Numbers k such that k and k+1 are both binary Moran numbers (A334344).
115, 355, 1266, 1555, 1686, 1795, 4195, 4206, 4962, 5155, 5298, 6978, 9235, 10002, 11230, 13315, 18822, 21752, 22602, 23106, 26072, 29816, 40616, 42258, 60056, 60730, 64690, 68802, 83586, 87272, 91736, 94616, 100990, 107526, 108910, 109448, 113192, 121112, 125436
Offset: 1
Examples
115 is a term since 115/A000120(115) = 23 and 116/A000120(116) = 29 are both prime numbers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
q:= n-> (p-> is(p, integer) and isprime(p))(n/add(i, i=Bits[Split](n))): select(k-> q(k) and q(k+1), [$1..126000])[]; # Alois P. Heinz, Apr 23 2020
-
Mathematica
binMoranQ[n_] := PrimeQ[n / DigitCount[n, 2, 1]]; Select[Range[10^5], binMoranQ[#] && binMoranQ[# + 1] &]