A334356 Number of nonequivalent proper colorings of the vertices of a cube using at most n colors up to rotations and reflections of the cube.
0, 1, 15, 154, 1115, 5955, 24836, 85260, 251154, 655005, 1548085, 3374646, 6876805, 13237679, 24271170, 42667640, 72305556, 118640025, 189179979, 294066610, 446766495, 664893691, 971175920, 1394580804, 1971618950, 2747841525, 3779550801, 5135742990, 6900303529
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Cubical Graph
- Eric Weisstein's World of Mathematics, Vertex Coloring
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
PARI
a(n) = {n*(n - 1)*(n^6 - 11*n^5 + 61*n^4 - 195*n^3 + 384*n^2 - 428*n + 216)/48}
Formula
a(n) = n*(n - 1)*(n^6 - 11*n^5 + 61*n^4 - 195*n^3 + 384*n^2 - 428*n + 216)/48.
a(n) = Sum_{k=1..8} n^k * A334358(3,8-k) / 48.
Comments