cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334357 Number of nonequivalent proper colorings of the vertices of a 4D hypercube using at most n colors up to rotations and reflections of the cube.

Original entry on oeis.org

0, 1, 72, 7173, 610160, 28654530, 723903411, 11151501102, 117740542158, 928786063095, 5822688352360, 30338870238171, 135818642249082, 535712216425568, 1898338161488055, 6136965479845740, 18323823959847156, 51039512178104637, 133722394132080528
Offset: 1

Views

Author

Andrew Howroyd, Apr 24 2020

Keywords

Comments

Adjacent vertices may not have the same color.
a(n) is the number of nonequivalent n-colorings of the tesseract graph up to graph isomorphism.

Crossrefs

Formula

a(n) = n*(n - 1)*(n^14 - 31*n^13 + 465*n^12 - 4471*n^11 + 30805*n^10 - 161035*n^9 + 659293*n^8 - 2149343*n^7 + 5610000*n^6 - 11666144*n^5 + 19009100*n^4 - 23485632*n^3 + 20729104*n^2 - 11646800*n + 3125472)/384.
a(n) = Sum_{k=1..16} n^k * A334358(4,16-k) / 384.