A334392 Numbers m such that the LCM of their palindromic divisors is neither 1 nor m.
16, 25, 26, 27, 32, 34, 38, 39, 46, 48, 49, 50, 51, 52, 54, 57, 58, 62, 64, 65, 68, 69, 74, 75, 76, 78, 80, 81, 82, 85, 86, 87, 91, 92, 93, 94, 95, 96, 98, 100, 102, 104, 106, 108, 112, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 128, 129, 130, 133, 134
Offset: 1
Examples
50 has 3 palindromic divisors {1, 2, 5} then A087999(50) = 10 and 50 is a term.
Links
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Mathematica
Select[Range[125], !MemberQ[{1, #}, LCM @@ Select[Divisors[#], PalindromeQ]] &] (* Amiram Eldar, May 05 2020 *)
-
PARI
ispal(x) = my(d=digits(x)); d == Vecrev(d); isok(m) = my(d=divisors(m), lcmpd = lcm(select(x->ispal(x), d))); (lcmpd != 1) && (lcmpd != m); \\ Michel Marcus, May 05 2020
Comments