cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334428 Irregular triangle read by rows: row n gives the members of the smallest nonnegative reduced residue system in the modified congruence modulo 2*n - 1 by Brändli and Beyne, called mod*(2*n - 1).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 1, 2, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 4, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 4, 5, 8, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 1, 2, 4, 5, 7, 8, 10, 11, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 1

Views

Author

Wolfdieter Lang, Jun 27 2020

Keywords

Comments

The length of row n is A072451(n) = A055034(2*n-1), for n >= 1.
See the Brändli-Beyne link, and A333856 for the definition and some examples of this mod* system.
This reduced residue system mod* (2*n - 1) will be called RRS*(2*n - 1).
Compare this table with the one for the reduced residue system modulo 2*n - 1 (called RRS(2*n - 1) = A038566(2*n - 1), but with A038566(1) = 0). For n >= 2 RRS*(2*n-1) consists of the first half of the entries of RRS(2*n - 1).
The modular arithmetic is multiplicative but not additive for mod*. See A333856 for examples.

Examples

			The irregular triangle T(n, k) begins (b = 2*n - 1):
n    b \k  1 2 3 4 5  6  7  8  9 10 11 12 13 14 15 16 17 18 ...
---------------------------------------------------------------
1    1:    0
2    3:    1
3    5:    1 2
4    7:    1 2 3
5    9:    1 2 4
6   11:    1 2 3 4 5
7   13:    1 2 3 4 5  6
8   15:    1 2 4 7
9   17:    1 2 3 4 5  6  7  8
10  19:    1 2 3 4 5  6  7  8  9
11  21:    1 2 4 5 8 10
12  23:    1 2 3 4 5  6  7  8  9 10 11
13  25:    1 2 3 4 6  7  8  9 11 12
14  27:    1 2 4 5 7  8 10 11 13
15  29:    1 2 3 4 5  6  7  8  9 10 11 12 13 14
16  31:    1 2 3 4 5  6  7  8  9 10 11 12 13 14 15
17  33:    1 2 4 5 7  8 10 13 14 16
18  35:    1 2 3 4 6  8  9 11 12 13 16 17
19  37:    1 2 3 4 5  6  7  8  9 10 11 12 13 14 15 16 17 18
20  39:    1 2 4 5 7  8 10 11 14 16 17 19
...
-----------------------------------------------------------
For n = 5 (b = 9) see the example in A333856.
		

Crossrefs

Programs

  • Mathematica
    Array[Function[{m, b}, Select[Range[1, m], GCD[#, b] == 1 &] /. {} -> {0}] @@ {# - 1, 2 # - 1} &, 16] // Flatten (* Michael De Vlieger, Jun 27 2020 *)

Formula

T(1, 1) = 0, T(n, k) = A038566(2*n - 1, k) for k = 1, 2, ..., A072451(n), for n >= 2.