A334428 Irregular triangle read by rows: row n gives the members of the smallest nonnegative reduced residue system in the modified congruence modulo 2*n - 1 by Brändli and Beyne, called mod*(2*n - 1).
0, 1, 1, 2, 1, 2, 3, 1, 2, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 4, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 4, 5, 8, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 1, 2, 4, 5, 7, 8, 10, 11, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 1
Examples
The irregular triangle T(n, k) begins (b = 2*n - 1): n b \k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... --------------------------------------------------------------- 1 1: 0 2 3: 1 3 5: 1 2 4 7: 1 2 3 5 9: 1 2 4 6 11: 1 2 3 4 5 7 13: 1 2 3 4 5 6 8 15: 1 2 4 7 9 17: 1 2 3 4 5 6 7 8 10 19: 1 2 3 4 5 6 7 8 9 11 21: 1 2 4 5 8 10 12 23: 1 2 3 4 5 6 7 8 9 10 11 13 25: 1 2 3 4 6 7 8 9 11 12 14 27: 1 2 4 5 7 8 10 11 13 15 29: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 31: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 33: 1 2 4 5 7 8 10 13 14 16 18 35: 1 2 3 4 6 8 9 11 12 13 16 17 19 37: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 39: 1 2 4 5 7 8 10 11 14 16 17 19 ... ----------------------------------------------------------- For n = 5 (b = 9) see the example in A333856.
Links
- Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half the Amount of Residues, arXiv:1504.02757 [math.NT], 2016.
Programs
-
Mathematica
Array[Function[{m, b}, Select[Range[1, m], GCD[#, b] == 1 &] /. {} -> {0}] @@ {# - 1, 2 # - 1} &, 16] // Flatten (* Michael De Vlieger, Jun 27 2020 *)
Comments