A334430 Irregular triangle read by rows. Row n gives the cycles of positive integers of the complete modified doubling sequence MDS(b) for b = 2*n + 1, for n >= 1.
1, 2, 1, 2, 3, 1, 2, 4, 1, 2, 4, 3, 5, 1, 2, 4, 5, 3, 6, 1, 2, 4, 7, 1, 2, 4, 8, 1, 6, 5, 7, 3, 2, 4, 8, 3, 6, 7, 5, 9, 1, 2, 4, 8, 5, 10, 1, 2, 4, 8, 7, 9, 5, 10, 3, 6, 11, 1, 2, 4, 8, 9, 7, 11, 3, 6, 12, 1, 2, 4, 8, 11, 5, 10, 7, 13, 1, 2, 4, 8, 13, 3, 6, 12, 5, 10, 9, 11, 7, 14, 1
Offset: 1
Examples
The irregular triangle a(n,m) begins (cycles are enclosed by brackets; blanks are used to fit the index m): n, b \ m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... 1, 3: (1) 2, 5: (2 1) 3, 7: (2 3 1) 4, 9: (2 4 1) 5, 11: (2 4 3 5 1) 6, 13: (2 4 5 3 6 1) 7, 15: (2 4 7 1) 8, 17: (2 4 8 1)(6 5 7 3) 9, 19: (2 4 8 3 6 7 5 9 1) 10, 21: (2 4 8 5 10 1) 11, 23: (2 4 8 7 9 5 10 3 6 11 1) 12, 25: (2 4 8 9 7 11 3 6 12 1) 13, 27: (2 4 8 11 5 10 7 13 1) 14, 29: (2 4 8 13 3 6 12 5 10 9 11 7 14 1) 15, 31: (2 4 8 15 1) (6 12 7 14 3)(10 11 9 13 5) 16, 33: (2 4 8 16 1)(10 13 7 14 5) 17, 35: (2 4 8 16 3 6 12 11 13 9 17 1) 18, 37: (2 4 8 16 5 10 17 3 6 12 13 11 15 7 14 9 18 1) 19, 39: (2 4 8 16 7 14 11 17 5 10 19 1) 20, 41: (2 4 8 16 9 18 5 10 20 1) (6 12 17 7 14 13 15 11 19 3) ... ------------------------------------------------------------------------- n = 8, b = 17: (2, 4, 8, 16) = (2, 4, 8, 16) (mod(17)) = (2, 4, 8, 1) (mod*(17), and the first odd (reduced) number missing is 3, with cycle (3*2, 3*4, 3*8, 3*16) = (6, 12, 7, 14) (mod(17)) = (6, 5, 7, 3) (mod*(17). From this the complete coach system Sigma(17) becomes {[[1], [4]]; [[3 7 5], [1 1 2]]]}. The complete SBB(17) cycle systen is (unsigned, offset 0) {(1 15 13 9); (3 11 5 7)}, from 17 - 2*8 = 1, 17 - 2*1 = 15, 17 - 2*2 = 13, 17 - 2*4 = 9, and from 17 - 2*7 = 3, 17 - 2*3 = 11, 17 - 2*6 = 5, 17 - 2*5 = 7.
References
- Peter Hilton and Jean Pederson, A Mathematical Tapestry, 2010 (3rd printing 2012), Cambridge University Press, pp. 102-103, 260-264.
- Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3 to 113 (with some gaps), pp. 158-166.
Links
- Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half the Amount of Residues, arXiv:1504.02757 [math.NT], 2015-2016.
- Jay Kappraff and Gary W. Adamson, Polygons and Chaos, Journal of Dynamical Systems and Geometric Theories, Vol 2 (2004), pp. 67-80.
- Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
Formula
See the above given recurrence relation for the cycles Cy*(b, i), i = 1, 2, ..., c(b) = A135303((b-1)/2), for b = 2*n + 1 >= 3, and the procedure to choose the inputs a(b, i).
Comments