cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334434 Heinz number of the n-th integer partition in graded lexicographic order.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 12, 9, 10, 7, 32, 24, 18, 20, 15, 14, 11, 64, 48, 36, 27, 40, 30, 25, 28, 21, 22, 13, 128, 96, 72, 54, 80, 60, 45, 50, 56, 42, 35, 44, 33, 26, 17, 256, 192, 144, 108, 81, 160, 120, 90, 100, 75, 112, 84, 63, 70, 49, 88, 66, 55, 52, 39, 34, 19
Offset: 0

Views

Author

Gus Wiseman, May 01 2020

Keywords

Comments

A permutation of the positive integers.
This is the graded reverse of the so-called "Mathematica" order (A080577, A129129).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{4,3},{8,6,5},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}              11: {5}                 45: {2,2,3}
    2: {1}             64: {1,1,1,1,1,1}       50: {1,3,3}
    4: {1,1}           48: {1,1,1,1,2}         56: {1,1,1,4}
    3: {2}             36: {1,1,2,2}           42: {1,2,4}
    8: {1,1,1}         27: {2,2,2}             35: {3,4}
    6: {1,2}           40: {1,1,1,3}           44: {1,1,5}
    5: {3}             30: {1,2,3}             33: {2,5}
   16: {1,1,1,1}       25: {3,3}               26: {1,6}
   12: {1,1,2}         28: {1,1,4}             17: {7}
    9: {2,2}           21: {2,4}              256: {1,1,1,1,1,1,1,1}
   10: {1,3}           22: {1,5}              192: {1,1,1,1,1,1,2}
    7: {4}             13: {6}                144: {1,1,1,1,2,2}
   32: {1,1,1,1,1}    128: {1,1,1,1,1,1,1}    108: {1,1,2,2,2}
   24: {1,1,1,2}       96: {1,1,1,1,1,2}       81: {2,2,2,2}
   18: {1,2,2}         72: {1,1,1,2,2}        160: {1,1,1,1,1,3}
   20: {1,1,3}         54: {1,2,2,2}          120: {1,1,1,2,3}
   15: {2,3}           80: {1,1,1,1,3}         90: {1,2,2,3}
   14: {1,4}           60: {1,1,2,3}          100: {1,1,3,3}
Triangle begins:
    1
    2
    4   3
    8   6   5
   16  12   9  10   7
   32  24  18  20  15  14  11
   64  48  36  27  40  30  25  28  21  22  13
  128  96  72  54  80  60  45  50  56  42  35  44  33  26  17
  ...
This corresponds to the tetrangle:
                  0
                 (1)
               (11)(2)
             (111)(21)(3)
        (1111)(211)(22)(31)(4)
  (11111)(2111)(221)(311)(32)(41)(5)
		

Crossrefs

Row lengths are A000041.
The dual version (sum/revlex) is A129129.
The constructive version is A193073.
Compositions under the same order are A228351.
The length-sensitive version is A334433.
The version for reversed (weakly increasing) partitions is A334437.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
Row sums give A145519.

Programs

  • Maple
    T:= n-> map(p-> mul(ithprime(i), i=p), combinat[partition](n))[]:
    seq(T(n), n=0..8);  # Alois P. Heinz, Jan 26 2025
  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n],lexsort],{n,0,8}]
    - or -
    Join@@Table[Times@@Prime/@#&/@Reverse[IntegerPartitions[n]],{n,0,8}]

Formula

A001222(a(n)) appears to be A049085(n).