A334434 Heinz number of the n-th integer partition in graded lexicographic order.
1, 2, 4, 3, 8, 6, 5, 16, 12, 9, 10, 7, 32, 24, 18, 20, 15, 14, 11, 64, 48, 36, 27, 40, 30, 25, 28, 21, 22, 13, 128, 96, 72, 54, 80, 60, 45, 50, 56, 42, 35, 44, 33, 26, 17, 256, 192, 144, 108, 81, 160, 120, 90, 100, 75, 112, 84, 63, 70, 49, 88, 66, 55, 52, 39, 34, 19
Offset: 0
Examples
The sequence of terms together with their prime indices begins: 1: {} 11: {5} 45: {2,2,3} 2: {1} 64: {1,1,1,1,1,1} 50: {1,3,3} 4: {1,1} 48: {1,1,1,1,2} 56: {1,1,1,4} 3: {2} 36: {1,1,2,2} 42: {1,2,4} 8: {1,1,1} 27: {2,2,2} 35: {3,4} 6: {1,2} 40: {1,1,1,3} 44: {1,1,5} 5: {3} 30: {1,2,3} 33: {2,5} 16: {1,1,1,1} 25: {3,3} 26: {1,6} 12: {1,1,2} 28: {1,1,4} 17: {7} 9: {2,2} 21: {2,4} 256: {1,1,1,1,1,1,1,1} 10: {1,3} 22: {1,5} 192: {1,1,1,1,1,1,2} 7: {4} 13: {6} 144: {1,1,1,1,2,2} 32: {1,1,1,1,1} 128: {1,1,1,1,1,1,1} 108: {1,1,2,2,2} 24: {1,1,1,2} 96: {1,1,1,1,1,2} 81: {2,2,2,2} 18: {1,2,2} 72: {1,1,1,2,2} 160: {1,1,1,1,1,3} 20: {1,1,3} 54: {1,2,2,2} 120: {1,1,1,2,3} 15: {2,3} 80: {1,1,1,1,3} 90: {1,2,2,3} 14: {1,4} 60: {1,1,2,3} 100: {1,1,3,3} Triangle begins: 1 2 4 3 8 6 5 16 12 9 10 7 32 24 18 20 15 14 11 64 48 36 27 40 30 25 28 21 22 13 128 96 72 54 80 60 45 50 56 42 35 44 33 26 17 ... This corresponds to the tetrangle: 0 (1) (11)(2) (111)(21)(3) (1111)(211)(22)(31)(4) (11111)(2111)(221)(311)(32)(41)(5)
Links
- Alois P. Heinz, Rows n = 0..28, flattened
- OEIS Wiki, Orderings of partitions
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
Row lengths are A000041.
The dual version (sum/revlex) is A129129.
The constructive version is A193073.
Compositions under the same order are A228351.
The length-sensitive version is A334433.
The version for reversed (weakly increasing) partitions is A334437.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
Row sums give A145519.
Programs
-
Maple
T:= n-> map(p-> mul(ithprime(i), i=p), combinat[partition](n))[]: seq(T(n), n=0..8); # Alois P. Heinz, Jan 26 2025
-
Mathematica
lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n],lexsort],{n,0,8}] - or - Join@@Table[Times@@Prime/@#&/@Reverse[IntegerPartitions[n]],{n,0,8}]
Comments