A334436 Heinz numbers of all reversed integer partitions sorted first by sum and then reverse-lexicographically.
1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 15, 14, 18, 20, 24, 32, 13, 25, 21, 27, 22, 30, 28, 36, 40, 48, 64, 17, 35, 33, 45, 26, 50, 42, 54, 44, 60, 56, 72, 80, 96, 128, 19, 49, 55, 39, 75, 63, 81, 34, 70, 66, 90, 52, 100, 84, 108, 88, 120, 112, 144, 160, 192, 256
Offset: 0
Examples
The sequence of terms together with their prime indices begins: 1: {} 32: {1,1,1,1,1} 42: {1,2,4} 2: {1} 13: {6} 54: {1,2,2,2} 3: {2} 25: {3,3} 44: {1,1,5} 4: {1,1} 21: {2,4} 60: {1,1,2,3} 5: {3} 27: {2,2,2} 56: {1,1,1,4} 6: {1,2} 22: {1,5} 72: {1,1,1,2,2} 8: {1,1,1} 30: {1,2,3} 80: {1,1,1,1,3} 7: {4} 28: {1,1,4} 96: {1,1,1,1,1,2} 9: {2,2} 36: {1,1,2,2} 128: {1,1,1,1,1,1,1} 10: {1,3} 40: {1,1,1,3} 19: {8} 12: {1,1,2} 48: {1,1,1,1,2} 49: {4,4} 16: {1,1,1,1} 64: {1,1,1,1,1,1} 55: {3,5} 11: {5} 17: {7} 39: {2,6} 15: {2,3} 35: {3,4} 75: {2,3,3} 14: {1,4} 33: {2,5} 63: {2,2,4} 18: {1,2,2} 45: {2,2,3} 81: {2,2,2,2} 20: {1,1,3} 26: {1,6} 34: {1,7} 24: {1,1,1,2} 50: {1,3,3} 70: {1,3,4} Triangle begins: 1 2 3 4 5 6 8 7 9 10 12 16 11 15 14 18 20 24 32 13 25 21 27 22 30 28 36 40 48 64 17 35 33 45 26 50 42 54 44 60 56 72 80 96 128 This corresponds to the following tetrangle: 0 (1) (2)(11) (3)(12)(111) (4)(22)(13)(112)(1111) (5)(23)(14)(122)(113)(1112)(11111)
Links
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
Row lengths are A000041.
Compositions under the same order are A066099 (triangle).
The version for non-reversed partitions is A129129.
The constructive version is A228531.
The lengths of these partitions are A333486.
The length-sensitive version is A334435.
The dual version (sum/lex) is A334437.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.
Programs
-
Mathematica
lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; Table[Times@@Prime/@#&/@Reverse[Sort[Sort/@IntegerPartitions[n],lexsort]],{n,0,8}]
Comments