cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334464 a(n) is the total number of parts in all partitions of n into consecutive parts that differ by 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 1, 3, 4, 7, 1, 6, 1, 7, 4, 3, 1, 10, 1, 3, 4, 7, 1, 6, 1, 7, 9, 3, 1, 10, 1, 8, 4, 7, 1, 6, 6, 7, 4, 3, 1, 15, 1, 3, 4, 7, 6, 12, 1, 7, 4, 8, 1, 16, 1, 3, 9, 7, 1, 12, 1, 12, 4, 3, 1, 16, 6, 3, 4, 7, 1, 17, 8, 7, 4
Offset: 1

Views

Author

Omar E. Pol, May 05 2020

Keywords

Comments

The one-part partition n = n is included in the count.
For the relation to hexagonal numbers see also A334462.

Examples

			For n = 28 there are three partitions of 28 into consecutive parts that differ by 4, including 28 as a valid partition. They are [28], [16, 12] and [13, 9, 5, 1]. The number of parts of these partitions are 1, 2, 4 respectively. The total number of parts is 1 + 2 + 4 = 7, so a(28) = 7.
		

Crossrefs

Row sums of A334462.
Column k=4 of A334466.
Cf. A000384.
Sequences of the same family whose consecutive parts differs by k are: A000203 (k=0), A204217 (k=1), A066839 (k=2), A330889 (k=3), this sequence (k=4), A334732 (k=5), A334949 (k=6).
Cf. A334461.

Programs

  • Mathematica
    nmax = 100;
    CoefficientList[Sum[n x^(n(2n-1)-1)/(1-x^n), {n, 1, nmax}]+O[x]^nmax, x] (* Jean-François Alcover, Nov 30 2020 *)
    Table[Sum[If[n > 2*k*(k-1), k, 0], {k, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Oct 22 2024 *)
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, k*x^(k*(2*k-1))/(1-x^k))) \\ Seiichi Manyama, Dec 04 2020

Formula

G.f.: Sum_{n>=1} n*x^(n*(2*n-1))/(1-x^n). (For proof, see A330889. - N. J. A. Sloane, Nov 21 2020)
Sum_{k=1..n} a(k) ~ sqrt(2) * n^(3/2) / 3. - Vaclav Kotesovec, Oct 23 2024