A334527 Numbers that are both Niven numbers and Smith numbers.
4, 27, 378, 576, 588, 645, 648, 666, 690, 825, 915, 1872, 1908, 1962, 2265, 2286, 2484, 2556, 2688, 2934, 2970, 3168, 3258, 3294, 3345, 3366, 3390, 3564, 3615, 3690, 3852, 3864, 3930, 4428, 4464, 4557, 4880, 5526, 6084, 6315, 7695, 8154, 8736, 8883, 9015, 9036
Offset: 1
Examples
27 is a term since it is a Niven number (2 + 7 = 9 is a divisor of 27) and a Smith number (27 = 3 * 3 * 3 and 2 + 7 = 3 + 3 + 3).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Shyam Sunder Gupta, Smith Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157.
- Wayne L. McDaniel, On the Intersection of the Sets of Base b Smith Numbers and Niven Numbers, Missouri Journal of Mathematical Sciences, Vol. 2, No. 3 (1990), pp. 132-136.
Programs
-
Mathematica
digSum[n_] := Plus @@ IntegerDigits[n]; nivenSmithQ[n_] := Divisible[n, (ds = digSum[n])] && CompositeQ[n] && Plus @@ (Last@# * digSum[First@#] & /@ FactorInteger[n]) == ds; Select[Range[10^4], nivenSmithQ]
-
Python
from sympy import factorint def sd(n): return sum(map(int, str(n))) def ok(n): sdn = sd(n) if sdn == 0 or n%sdn != 0: return False # not Niven f = factorint(n) return sum(f[p] for p in f) > 1 and sdn == sum(sd(p)*f[p] for p in f) print(list(filter(ok, range(9999)))) # Michael S. Branicky, Apr 27 2021
Comments