cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A334528 Palindromic numbers that are also Niven numbers and Smith numbers.

Original entry on oeis.org

4, 666, 28182, 45054, 51315, 82628, 239932, 454454, 864468, 2594952, 2976792, 3189813, 3355533, 4172714, 4890984, 5319135, 5367635, 5777775, 7149417, 7247427, 8068608, 8079708, 8100018, 8280828, 8627268, 9227229, 9423249, 21699612, 22544522, 24166142, 27677672
Offset: 1

Views

Author

Amiram Eldar, May 05 2020

Keywords

Comments

Witno (2014) proved that this sequence is infinite.

Examples

			666 is a term since it is palindromic, a Niven number (6 + 6 + 6 = 18 is a divisor of 666) and a Smith number (666 = 2 * 3 * 3 * 37 and 6 + 6 + 6 = 2 + 3 + 3 + 3 + 7).
		

Crossrefs

Intersection of A002113, A005349 and A006753.
Intersection of any two of the sequences A082232, A098834 and A334527.

Programs

  • Mathematica
    digSum[n_] := Plus @@ IntegerDigits[n]; palNivenSmithQ[n_] := PalindromeQ[n] && Divisible[n, (ds = digSum[n])] && CompositeQ[n] && Plus @@ (Last@# * digSum[First@#] & /@ FactorInteger[n]) == ds; Select[Range[10^5], palNivenSmithQ]

A334531 Numbers that are both binary Niven numbers and binary Smith numbers.

Original entry on oeis.org

55, 185, 205, 222, 246, 438, 623, 822, 973, 1503, 1939, 2359, 2471, 3126, 3205, 3462, 3573, 3661, 3771, 3846, 4711, 5877, 5949, 6093, 6198, 6655, 6918, 7083, 7550, 7931, 8151, 8170, 9567, 9863, 10265, 10683, 11241, 12280, 12318, 12486, 12678, 13695, 13790, 13820
Offset: 1

Views

Author

Amiram Eldar, May 05 2020

Keywords

Examples

			The binary representation of 55 is 110111. It is a binary Niven number since 1 + 1 + 0 + 1 + 1 + 1 = 5 is a divisor of 55. It is also a binary Smith number since its prime factorization, 5 * 11, is 101 * 1011 in binary representation, and 1 + 1 + 0 + 1 + 1 + 1 = (1 + 0 + 1) + (1 + 0 + 1 + 1). Thus 55 is a term.
		

Crossrefs

Intersection of A049445 and A278909.
Cf. A334527.

Programs

  • Mathematica
    binWt[n_] := DigitCount[n, 2, 1]; binNivenSmithQ[n_] := Divisible[n, (bw = binWt[n])] && CompositeQ[n] && Plus @@ (Last@# * binWt[First@#] & /@ FactorInteger[n]) == bw; Select[Range[10^4], binNivenSmithQ]

A351618 Numbers that are both Zuckerman numbers and Smith numbers.

Original entry on oeis.org

4, 1111, 3168, 7119, 31488, 141184, 698112, 1169316, 1621248, 1687392, 1938816, 1967112, 12469248, 12822912, 14112672, 16616448, 41484288, 79817472, 116149248, 121911264, 128894976, 163319328, 166491936, 193916916, 218431488, 247984128, 798142464, 817883136
Offset: 1

Views

Author

Bernard Schott, Feb 15 2022

Keywords

Examples

			3168 is a term since it is a Zuckerman number (3*1*6*8) = 144 is a divisor of 3168 and a Smith number (3168 = 2*2*2*2*2*3*3*11 and 2+2+2+2+2+3+3+1+1 = 3+1+6+8).
		

Crossrefs

Intersection of A007602 and A006753.
Cf. A334527.

Programs

  • Mathematica
    digSum[n_] := Plus @@ IntegerDigits[n]; smithQ[n_] := CompositeQ[n] && Plus @@ (Last@# * digSum[First@#] & /@ FactorInteger[n]) == digSum[n]; zuckQ[n_] := (prodig = Times @@ IntegerDigits[n]) > 0 && Divisible[n, prodig]; Select[Range[10^6], zuckQ[#] && smithQ[#] &] (* Amiram Eldar, Feb 15 2022 *)
  • PARI
    isok(m) = my(d=digits(m)); if (vecmin(d) && !(m % vecprod(d)) && !isprime(m) , my(f=factor(m)); sum(k=1, #f~, sumdigits(f[k,1])*f[k,2]) == vecsum(d)); \\ Michel Marcus, Feb 15 2022

Extensions

More terms from Amiram Eldar, Feb 15 2022
Showing 1-3 of 3 results.