A334661 Numbers k such that k*sod(k) and k+sod(k) are both palindromes, where sod(k) denotes the sum of digits of k (A007953).
0, 1, 2, 3, 124, 829, 186373637, 186454637, 187272737, 195454547, 23212121199, 23302120299, 1230303030288, 1312121212098, 1320303030198, 1321121211198, 1321203021198, 1321211121198, 1330121210298, 1330203020298, 1330211120298, 1330301030298, 2130303030279
Offset: 1
Examples
The sum of digits of 829 is 19 and 829*19 = 15751 and 829+19 = 848 are palindromes, so 829 is a term.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..2729
Programs
-
Mathematica
Select[Range[0, 999], (s = Plus @@ IntegerDigits[#]; PalindromeQ[# s] && PalindromeQ[# + s]) &]
-
PARI
ispal(n) = my(d=digits(n)); d == Vecrev(d); isok(m) = my(s=sumdigits(m)); ispal(m*s) && ispal(m+s); \\ Michel Marcus, May 08 2020
Comments