A334539 The eventual period of a sequence b(n, m) where b(n, 1) = 1 and the m-th term is the number of occurrences of b(n, m-1) in the list of integers from b(n, max(m-n, 1)) to b(n, m-1).
1, 3, 8, 11, 25, 20, 40, 9, 45, 41, 158, 200, 14, 185, 636, 589, 595, 432, 773, 3196, 1249, 50, 7703, 7661, 12954, 25629, 14885, 41189, 23200, 87410, 33969, 63225, 20486, 212825, 58621, 152952, 135263, 2743830, 729008, 384150, 908629, 126746, 4543899, 3448777, 8531396
Offset: 1
Keywords
Examples
The sequence b(3, m) is 1, 1, 2, 1, 2, 2, 2, 3, 1, 1, 2, ... the period of which is 8. The sequence b(4, m) is 1, 1, 2, 1, 3, 1, 2, 1, 2, 2, 3, 1, 1, 2, ... the period of which is 11. The sequence b(5, m) is 1, 1, 2, 1, 3, 1, 3, 2, 1, 2, 2, 3, 1, 2, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 4, 1, 1, 2, ... the period of which is 25.
Links
- Elad Michael, Table of n, a(n) for n = 1..100 (terms 1..76 from Johan Westin)
- Reddit user supermac30, Foggy Sequences
Programs
-
Mathematica
a[k_] := Block[{b = Append[0 Range@k, 1], A=<||>, n=0}, While[True, n++; b = Rest@ b; AppendTo[b, Count[b, b[[-1]]]]; If[ KeyExistsQ[A, b], Break[]]; A[b] = n]; n - A[b]]; Array[a, 30] (* Giovanni Resta, May 06 2020 *)
-
Python
import sympy def A334539(n): return next(sympy.cycle_length(lambda x:x[1:]+(x.count(x[-1]),),(0,)*(n-1)+(1,)))[0] # Pontus von Brömssen, May 05 2021
Extensions
More terms from Giovanni Resta, May 06 2020
Comments