A334557 Numbers m such that m = p^2 + k^2, with p > 0, where p = A007954(m) = the product of digits of m.
1, 13, 41, 61, 125, 212, 281, 613, 1156, 1424, 2225, 3232, 3316, 4113, 11125, 11281, 11525, 12816, 14913, 16317, 16441, 19125, 21284, 21625, 24128, 25216, 27521, 31525, 53125, 56116, 61321, 65161, 71325, 82116, 82217, 83521, 84313, 111812, 113125, 113625, 115336, 115681, 117125, 118372
Offset: 1
Examples
13 is a term as p = 1*3 = 3 and 13 = 3^2 + 2^2. 281 is a term as p = 2*8*1 = 16 and 281 = 16^2 + 5^2. 118372 is a term as p = 1*1*8*3*7*2 = 336 and 118372 = 336^2 + 74^2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isok(m) = my(p=vecprod(digits(m))); p && issquare(m - p^2); \\ Michel Marcus, May 06 2020