A334558 Numbers m such that m^2 + p^2 = k^2, with p > 0, where p = A007954(m) = the product of digits of m.
429, 437, 598, 1938, 3584, 3875, 5576, 6864, 16758, 36828, 43778, 47775, 47859, 56637, 56672, 82928, 91798, 129584, 156782, 165688, 165838, 178857, 215985, 379488, 655578, 798847, 1881576, 2893337, 3918768, 4816872, 5439798, 5829795, 7558299, 9675288, 11943887
Offset: 1
Examples
429 is a term as p = 4*2*9 = 72 and 429^2 + 72^2 = 189225 = 435^2. 16758 is a term as p = 1*6*7*5*8 = 1680 and 16758^2 + 1680^2 = 283652964 = 16842^2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..147 (terms < 2*10^13)
Programs
-
PARI
isok(m) = my(p=vecprod(digits(m))); p && issquare(m^2 + p^2); \\ Michel Marcus, May 06 2020