A334561 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(-Sum_{j=1..k} x^j).
1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 5, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 25, -41, 1, 1, -1, -1, -1, 1, 19, 31, -1, 1, -1, -1, -1, 1, 139, -209, 461, 1, 1, -1, -1, -1, 1, 19, 151, -2269, -895, -1, 1, -1, -1, -1, 1, 19, 871, -1429, 2801, -6481, 1, 1, -1, -1, -1, 1, 19, 151, 1091, -19039, 68615, 22591, -1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... -1, -1, -1, -1, -1, -1, -1, ... 1, -1, -1, -1, -1, -1, -1, ... -1, 5, -1, -1, -1, -1, -1, ... 1, 1, 25, 1, 1, 1, 1, ... -1, -41, 19, 139, 19, 19, 19, ... 1, 31, -209, 151, 871, 151, 151, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
A(0,k) = 1 and A(n,k) = - (n-1)! * Sum_{j=1..min(k,n)} j*A(n-j,k)/(n-j)!.