cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334578 Double subfactorials: a(n) = (-1)^floor(n/2) * n!! * Sum_{i=0..floor(n/2)} (-1)^i/(n-2*i)!!.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 29, 76, 233, 685, 2329, 7534, 27949, 97943, 391285, 1469144, 6260561, 24975449, 112690097, 474533530, 2253801941, 9965204131, 49583642701, 229199695012, 1190007424825, 5729992375301, 30940193045449, 154709794133126, 866325405272573
Offset: 0

Views

Author

Ryan Brooks, May 06 2020

Keywords

Examples

			a(5) = (5*3*1)*(1/(1) - 1/(3*1) + 1/(5*3*1)) = 15-5+1 = 11.
		

Crossrefs

Even bisection gives A000354.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, [0$2, 1$2][n+3],
          (n-1)*a(n-2)+(n-2)*a(n-4))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, May 06 2020
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 1, a[n] == n a[n-2] + (-1)^Floor[n/2]}, a, {n, 0, 32}] (* Jean-François Alcover, Nov 27 2020 *)

Formula

a(n) = n*a(n-2) + (-1)^floor(n/2).
a(2n) = A000354(n).
From Ryan Brooks, Oct 25 2020: (Start)
a(2n)/A006882(2n) ~ 1/sqrt(e) = A092605.
a(2n+1)/A006882(2n+1) ~ sqrt(Pi/(2*e))*erfi(1/sqrt(2)) = A306858. (End)