A334594 Irregular table read by rows: T(n,k) is the binary interpretation of the k-th row of the XOR-triangle with first row generated from the binary expansion of n. 1 <= k <= A070939(n).
1, 2, 1, 3, 0, 4, 2, 1, 5, 3, 0, 6, 1, 1, 7, 0, 0, 8, 4, 2, 1, 9, 5, 3, 0, 10, 7, 0, 0, 11, 6, 1, 1, 12, 2, 3, 0, 13, 3, 2, 1, 14, 1, 1, 1, 15, 0, 0, 0, 16, 8, 4, 2, 1, 17, 9, 5, 3, 0, 18, 11, 6, 1, 1, 19, 10, 7, 0, 0, 20, 14, 1, 1, 1, 21, 15, 0, 0, 0
Offset: 1
Examples
Table begins: 1; 2, 1; 3, 0; 4, 2, 1; 5, 3, 0; 6, 1, 1; 7, 0, 0; 8, 4, 2, 1; 9, 5, 3, 0; 10, 7, 0, 0; 11, 6, 1, 1; For the 11th row, the binary expansion of 11 is 1011_2, and the corresponding XOR-triangle is 1 0 1 1 1 1 0 0 1 1 Reading the rows of this triangle in binary gives 11, 6, 1, 1.
Links
- Peter Kagey, Table of n, a(n) for n = 1..9217 (first 1023 rows)
- MathOverflow user DSM, Number triangle
- Index entries for sequences related to binary expansion of n
Programs
-
Mathematica
Array[Prepend[FromDigits[#, 2] & /@ #2, #1] & @@ {#, Rest@ NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &]} &, 21] // Flatten (* Michael De Vlieger, May 08 2020 *)
-
PARI
row(n) = {my(b=binary(n), v=vector(#b)); v[1] = n; for (n=1, #b-1, b = vector(#b-1, k, bitxor(b[k], b[k+1])); v[n+1] = fromdigits(b, 2);); v;} \\ Michel Marcus, May 08 2020
Comments