A337820 Array read by antidiagonals: T(n,k) (n >= 1, k >= 0) is the ratio (the number of nonnegative bases m < n such that m^k == m (mod n))/(the number of nonnegative bases m < n such that -m^k == m (mod n)).
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 1, 9, 1, 3, 1, 5, 1, 3, 1, 1, 1, 5, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 11, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 13, 1, 3, 1, 3
Offset: 1
Examples
The initial rows of the array are: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 3, 1, 3, 3, 5, 3, 1, 3, 9, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 3, 5, 3, 3, 5, 3, 5, 3, 9, 5, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 3, 1, 3, 7, 5, 7, 1, 3, 9, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 3, 5, 3, 3, 5, 3, 5, 3, 9, 5, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 3, 1, 3, 3, 5, 3, 1, 3, 9, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 3, 5, 3, 7, 5, 7, 5, 3, 9, 5, ... The initial antidiagonals are: 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 1, 9, 1, 3, 1, 5, 1, 3, 1, 1, 1, 5, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 11, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 13, 1, 3, 1, 3, 1, 7, 1, 5, 1, 3, 1, 1, ...
Crossrefs
Programs
-
Magma
/* As triangle */ [[#[m: m in [0..n-k-1] | m^k mod (n-k) eq m]/ #[m: m in [0..n-k-1] | -m^k mod (n-k) eq m]: k in [0..n-1]]: n in [1..13]];
Formula
T(n, 2*k) = 1; 1 <= T(n, 2*k+1) <= n.
Comments