cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A337820 Array read by antidiagonals: T(n,k) (n >= 1, k >= 0) is the ratio (the number of nonnegative bases m < n such that m^k == m (mod n))/(the number of nonnegative bases m < n such that -m^k == m (mod n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 1, 9, 1, 3, 1, 5, 1, 3, 1, 1, 1, 5, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 11, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 13, 1, 3, 1, 3
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 23 2020

Keywords

Comments

Array read by antidiagonals: T(n,k) (n >=1, k >= 0) is part of n of the form (the number of nonnegative bases m < n such that m^k == m (mod n))/(the number of nonnegative bases m < n such that -m^k == m (mod n)).

Examples

			The initial rows of the array are:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, ...
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 1, 3, 3, 1, 3, 3, 5, 3, 1, 3, 9, 1, ...
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 1, 3, 3, 5, 3, 3, 5, 3, 5, 3, 9, 5, ...
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 1, 3, 3, 1, 3, 7, 5, 7, 1, 3, 9, 1, ...
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 1, 3, 3, 5, 3, 3, 5, 3, 5, 3, 9, 5, ...
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 1, 3, 3, 1, 3, 3, 5, 3, 1, 3, 9, 1, ...
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 1, 3, 3, 5, 3, 7, 5, 7, 5, 3, 9, 5, ...
The initial antidiagonals are:
     1,
     1,  1,
     1,  1, 1,
     1,  3, 1, 1,
     1,  2, 1, 1, 1,
     1,  5, 1, 3, 1, 1,
     1,  3, 1, 3, 1, 1, 1,
     1,  7, 1, 1, 1, 3, 1, 1,
     1,  4, 1, 3, 1, 3, 1, 1, 1,
     1,  9, 1, 3, 1, 5, 1, 3, 1, 1,
     1,  5, 1, 5, 1, 3, 1, 3, 1, 1, 1,
     1, 11, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1,
     1,  6, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1,
     1, 13, 1, 3, 1, 3, 1, 7, 1, 5, 1, 3, 1, 1,
...
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[#[m: m in [0..n-k-1] | m^k mod (n-k) eq m]/
    #[m: m in [0..n-k-1] | -m^k mod (n-k) eq m]: k in [0..n-1]]: n in [1..13]];

Formula

T(n, 2*k) = 1; 1 <= T(n, 2*k+1) <= n.
Showing 1-1 of 1 results.