A334622 A(n,k) is the sum of the k-th powers of the descent set statistics for permutations of [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 6, 8, 1, 1, 2, 10, 24, 16, 1, 1, 2, 18, 88, 120, 32, 1, 1, 2, 34, 360, 1216, 720, 64, 1, 1, 2, 66, 1576, 14460, 24176, 5040, 128, 1, 1, 2, 130, 7224, 190216, 994680, 654424, 40320, 256, 1, 1, 2, 258, 34168, 2675100, 46479536, 109021500, 23136128, 362880, 512
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, ... 2, 2, 2, 2, 2, 2, 2, ... 4, 6, 10, 18, 34, 66, 130, ... 8, 24, 88, 360, 1576, 7224, 34168, ... 16, 120, 1216, 14460, 190216, 2675100, 39333016, ... 32, 720, 24176, 994680, 46479536, 2368873800, 128235838496, ... ...
Links
- Alois P. Heinz, Antidiagonals n = 0..25, flattened
- R. Ehrenborg and A. Happ, On the powers of the descent set statistic, arXiv:1709.00778 [math.CO], 2017.
Crossrefs
Programs
-
Maple
b:= proc(u, o, t) option remember; expand(`if`(u+o=0, 1, add(b(u-j, o+j-1, t+1)*x^floor(2^(t-1)), j=1..u)+ add(b(u+j-1, o-j, t+1), j=1..o))) end: A:= (n, k)-> (p-> add(coeff(p, x, i)^k, i=0..degree(p)))(b(n, 0$2)): seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = Expand[If[u + o == 0, 1, Sum[b[u - j, o + j - 1, t + 1] x^Floor[2^(t - 1)], {j, 1, u}] + Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]]]; A[n_, k_] := Function[p, Sum[Coefficient[p, x, i]^k, {i, 0, Exponent[p, x]}]][b[n, 0, 0]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
Formula
A(n,k) = Sum_{j=0..ceiling(2^(n-1))-1} A060351(n,j)^k.