cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334632 Decimal expansion of Sum_{k>=0} (-1)^k / ((2*k)!)^2.

Original entry on oeis.org

7, 5, 1, 7, 3, 4, 1, 8, 2, 7, 1, 3, 8, 0, 8, 2, 2, 8, 5, 5, 0, 9, 9, 8, 9, 0, 1, 2, 3, 0, 7, 4, 6, 5, 7, 5, 9, 5, 9, 5, 8, 6, 5, 7, 6, 6, 0, 7, 2, 9, 2, 0, 0, 2, 7, 3, 8, 8, 4, 4, 6, 8, 4, 6, 0, 2, 9, 2, 6, 9, 4, 7, 0, 7, 7, 7, 8, 1, 9, 3, 5, 2, 5, 2, 6, 7, 4, 6, 2, 3, 4, 6, 8, 0, 8, 2, 1, 5, 1, 5, 2, 7, 3, 7, 3, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 10 2020

Keywords

Examples

			0.75173418271380822855099890123074657595958657660729200273884...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 55, page 552.

Crossrefs

Cf. A334379.

Programs

  • Maple
    evalf(Sum((-1)^k/(2*k)!^2, k=0..infinity), 120);
  • Mathematica
    RealDigits[KelvinBer[0, 2], 10, 120][[1]]
    RealDigits[Re[Hypergeometric0F1Regularized[1, I]], 10, 120][[1]]
    RealDigits[HypergeometricPFQ[{}, {1/2, 1/2, 1}, -1/16], 10, 120][[1]] (* Vaclav Kotesovec, Jul 19 2021 *)
  • PARI
    sumalt(k=0, (-1)^k/(2*k)!^2)

Formula

Equals Re(BesselJ(0, 2*exp(3*Pi*i/4))).