A334638 Three-column array pPT read by rows: subsequence of primitive Pythagorean triples (x, y, z) with x = A153893^2 - A000079^2, y = 2*A153893*A000079, z = A153893^2 + A000079^2, ordered by increasing z.
3, 4, 5, 21, 20, 29, 105, 88, 137, 465, 368, 593, 1953, 1504, 2465, 8001, 6080, 10049, 32385, 24448, 40577, 130305, 98048, 163073, 522753, 392704, 653825, 2094081, 1571840, 2618369, 8382465, 6289408, 10479617, 33542145, 25161728, 41930753, 134193153, 100655104, 167747585, 536821761, 402636800, 671039489, 2147385345, 1610579968, 2684256257
Offset: 0
Examples
The three-column array pPT(n,k) begins: n\k 0 1 2 ------------------------------- 0: 3 4 5 1: 21 20 29 2: 105 88 137 3: 465 368 593 4: 1953 1504 2465 5: 8001 6080 10049 6: 32385 24448 40577 7: 130305 98048 163073 8: 522753 392704 653825 9: 2094081 1571840 2618369 10: 8382465 6289408 10479617 ... - _Wolfdieter Lang_, Jun 13 2020
Links
- V. E. Firstov, A Special Matrix Transformation Semigroup of Primitive Pairs and the Genealogy of Pythagorean Triples; Mathematical Notes, volume 84, number 2, August 2008, pages 263-279; Link of the page (for the Russian article).
- Ralf Steiner, Weitere spezielle Folge primitiver pythagoraischer Dreiecke, ResearchGate.
- Wikipedia, Tree of primitive Pythagorean triples.
- Index entries for linear recurrences with constant coefficients, signature (0,0,7,0,0,-14,0,0,8).
Programs
-
Mathematica
h21={{1, 3}, {0, 2}}; l = {}; Do[v = MatrixPower[h21, n, {2, 1}]; p = v[[1]]; q = v[[2]]; a = p^2 - q^2; b = 2 p q; c = p^2 + q^2; l = AppendTo[l, {a, b, c}], {n, 0, 14}]; l // Flatten
-
PARI
Vec((3 + 4*x + 5*x^2 - 8*x^4 - 6*x^5 + 4*x^7 + 4*x^8) / ((1 - x)*(1 + x + x^2)*(1 - 2*x^3)*(1 - 4*x^3)) + O(x^35)) \\ Colin Barker, Jun 12 2020
Formula
The three-column array PT(n, k) is for k = 0, 1, 2: x(n), y(n), z(n), for n >= 0, with
x(n) = a(3*n + 0) = A153893(n)^2 - A000079(n)^2 = 1 - 3*2^(n+1) + 2^(2*n+3) = binomial(2^(n+2) - 1, 2) = 3*A171477(n),
From Colin Barker, May 08 2020: (Start)
G.f. (read as sequence {a(n)}): (3 + 4*x + 5*x^2 - 8*x^4 - 6*x^5 + 4*x^7 + 4*x^8) / ((1 - x)*(1 + x + x^2)*(1 - 2*x^3)*(1 - 4*x^3)).
a(n) = 7*a(n-3) - 14*a(n-6) + 8*a(n-9), for n > 8.
(End)
Extensions
Edited, and corrected proportion by Wolfdieter Lang, Jun 13 2020
Minor grammatical edits. - N. J. A. Sloane, Sep 12 2020
Comments