cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334649 a(n) is the total number of down steps between the third and fourth up steps in all 3_1-Dyck paths of length 4*n.

Original entry on oeis.org

0, 0, 0, 236, 1034, 6094, 40996, 295740, 2231022, 17370163, 138473536, 1124433142, 9266859394, 77307427741, 651540030688, 5538977450256, 47442103851930, 409000732566399, 3546232676711824, 30903652601552272, 270529448396053576, 2377829916885541565
Offset: 0

Views

Author

Benjamin Hackl, May 12 2020

Keywords

Comments

A 3_1-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
For n = 3, there is no 4th up step, a(3) = 236 enumerates the total number of down steps between the 3rd up step and the end of the path.

Crossrefs

Programs

  • SageMath
    [binomial(4*n + 1, n)/(4*n + 1) + 6*sum([binomial(4*j + 2, j)*binomial(4*(n - j), n - j)/(4*j + 2)/(n - j + 1) for j in srange(1, 4)]) - 52*(n==3) if n > 2 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020

Formula

a(0) = a(1) = a(2) = 0 and a(n) = binomial(4*n+1, n)/(4*n+1) + 6*Sum_{j=1..3} binomial(4*j+2, j)*binomial(4*(n-j), n-j)/((4*j+2)*(n-j+1)) - 52*[n=3] for n > 2, where [ ] is the Iverson bracket.