cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334711 Array read by antidiagonals: T(n,k) (n>=1, k>=1) = number of ways to select four points from an n X k grid so that they form a convex quadrilateral.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 9, 9, 0, 0, 36, 70, 36, 0, 0, 100, 276, 276, 100, 0, 0, 225, 750, 1038, 750, 225, 0, 0, 441, 1677, 2788, 2788, 1677, 441, 0, 0, 784, 3260, 6190, 7398, 6190, 3260, 784, 0, 0, 1296, 5776, 11942, 16328, 16328, 11942, 5776, 1296, 0, 0, 2025, 9508, 21062, 31396, 35727, 31396, 21062, 9508, 2025, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2020

Keywords

Comments

Computed by Tom Duff, Jun 15 2020
For the limiting probability that the four points form a convex quadrilateral when n and k are large, see the link to Sylvester's Four-Point Problem. Thanks to Ed Pegg Jr for this comment.

Examples

			The initial rows of the array are:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025, 4356, ...
0, 9, 70, 276, 750, 1677, 3260, 5776, 9508, 14825, 22090, 31764, ...
0, 36, 276, 1038, 2788, 6190, 11942, 21062, 34586, 53748, 79930, 114760, ...
0, 100, 750, 2788, 7398, 16328, 31396, 55244, 90484, 140372, 208490, 299048, ...
0, 225, 1677, 6190, 16328, 35727, 68447, 120106, 196338, 304161, 451035, 646116, ...
0, 441, 3260, 11942, 31396, 68447, 130768, 229034, 373968, 578777, 857524, 1227572, ...
0, 784, 5776, 21062, 55244, 120106, 229034, 400116, 652318, 1008438, 1492870, 2135534, ...
0, 1296, 9508, 34586, 90484, 196338, 373968, 652318, 1062016, 1640284, 2426660, 3469356, ...
0, 2025, 14825, 53748, 140372, 304161, 578777, 1008438, 1640284, 2531001, 3742053, 5347100, ...
...
The initial antidiagonals are:
0,
0, 0,
0, 1, 0,
0, 9, 9, 0,
0, 36, 70, 36, 0,
0, 100, 276, 276, 100, 0,
0, 225, 750, 1038, 750, 225, 0,
0, 441, 1677, 2788, 2788, 1677, 441, 0,
0, 784, 3260, 6190, 7398, 6190, 3260, 784, 0,
0, 1296, 5776, 11942, 16328, 16328, 11942, 5776, 1296, 0,
0, 2025, 9508, 21062, 31396, 35727, 31396, 21062, 9508, 2025, 0,
0, 3025, 14825, 34586, 55244, 68447, 68447, 55244, 34586, 14825, 3025, 0,
...
		

Crossrefs

The main diagonal is A189413.
Triangles A334708, A334709, A334710, A334711 give the counts for the four possible arrangements of four points.
For three points there are just two possible arrangements: see A334704 and A334705.