A334715 A(n,k) = !n + [n > 0] * (k * n!), where !n = A000166(n) is subfactorial of n and [] is an Iverson bracket; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 3, 5, 8, 9, 1, 4, 7, 14, 33, 44, 1, 5, 9, 20, 57, 164, 265, 1, 6, 11, 26, 81, 284, 985, 1854, 1, 7, 13, 32, 105, 404, 1705, 6894, 14833, 1, 8, 15, 38, 129, 524, 2425, 11934, 55153, 133496, 1, 9, 17, 44, 153, 644, 3145, 16974, 95473, 496376, 1334961
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, 7, ... 1, 3, 5, 7, 9, 11, 13, 15, ... 2, 8, 14, 20, 26, 32, 38, 44, ... 9, 33, 57, 81, 105, 129, 153, 177, ... 44, 164, 284, 404, 524, 644, 764, 884, ... 265, 985, 1705, 2425, 3145, 3865, 4585, 5305, ... 1854, 6894, 11934, 16974, 22014, 27054, 32094, 37134, ... ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- Wikipedia, Derangement
- Wikipedia, Iverson bracket
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n<2, (k-1)*n+1, n*A(n-1, k)+(-1)^n) end: seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
A[n_, k_] := Subfactorial[n] + Boole[n>0] k n!; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 11 2021 *)
Formula
E.g.f. of column k: (k*exp(x)*x+1)*exp(-x)/(1-x).
A(n,k) = A000166(n) + [n > 0] * (k * n!).
A(n,k) = (k-1)*n + 1 if n<2, A(n,k) = n*A(n-1, k) + (-1)^n if n>=2.