A334770 Side length s of the central triangle of zeros in the XOR-triangle T(n).
2, 2, 1, 4, 4, 1, 2, 2, 2, 2, 3, 6, 6, 3, 5, 8, 2, 2, 2, 2, 8, 5, 6, 3, 3, 6, 6, 3, 3, 6, 1, 1, 1, 1, 7, 10, 4, 4, 4, 4, 10, 7, 1, 1, 1, 1, 3, 9, 3, 12, 3, 6, 3, 6, 6, 3, 6, 3, 12, 3, 9, 3, 1, 1, 1, 1, 10, 7, 4, 4, 7, 10, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 10
Offset: 1
Keywords
Examples
For n = 151, we have rotationally symmetrical T(151) as below, replacing 0 with "." for clarity: 1 . . 1 . 1 1 1 1 . 1 1 1 . . 1 1 . . 1 . . 1 . 1 1 1 1 1 . . . 1 . 1 1 At the center of the figure we see a CZT with s = 2, ringed by 1s, with k = 2. Since 151 is the first term of A334769, a(1) = 2. For n = 599, we have a rotationally symmetrical T(599) with s = 4 and k = 2. 1 . . 1 . 1 . 1 1 1 1 . 1 1 1 1 1 . . 1 1 . . . . 1 . . 1 . . . 1 1 1 1 . . 1 . . 1 . 1 1 1 1 1 . . . 1 . 1 1 Since A334769(4) = 599, a(4) = 4.
Links
Programs
-
Mathematica
Block[{f, s = Rest[Import["https://oeis.org/A334556/b334556.txt", "Data"][[All, -1]] ]}, f[n_] := NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &]; Array[Block[{n = s[[#]]}, If[# == 0, Nothing, #] &@ FirstCase[MapIndexed[If[2 #2 > #3 + 1, Nothing, #1[[#2 ;; -#2]]] & @@ {#1, First[#2], Length@ #1} &, f[n][[1 ;; Ceiling[IntegerLength[#, 2]/(2 Sqrt[3])] + 3]] ], r_List /; FreeQ[r, 1] :> Length@ r] /. k_ /; MissingQ@ k -> 0] &, Lengths - 1, 2] ]
Comments