cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334770 Side length s of the central triangle of zeros in the XOR-triangle T(n).

Original entry on oeis.org

2, 2, 1, 4, 4, 1, 2, 2, 2, 2, 3, 6, 6, 3, 5, 8, 2, 2, 2, 2, 8, 5, 6, 3, 3, 6, 6, 3, 3, 6, 1, 1, 1, 1, 7, 10, 4, 4, 4, 4, 10, 7, 1, 1, 1, 1, 3, 9, 3, 12, 3, 6, 3, 6, 6, 3, 6, 3, 12, 3, 9, 3, 1, 1, 1, 1, 10, 7, 4, 4, 7, 10, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 10
Offset: 1

Views

Author

Michael De Vlieger, May 10 2020

Keywords

Comments

An XOR-triangle T(n) is an inverted 0-1 triangle formed by choosing a top row the binary rendition of n and having each entry in subsequent rows be the XOR of the two values above it, i.e., A038554(n) applied recursively until we reach a single bit.
A334556 is the sequence of rotationally symmetrical T(n).
A central zero-triangle (CZT) is a field of contiguous 0-bits in T(n) surrounded on all sides by a layer of 1 bits, and generally k > 1 bits of any parity. Alternatively, these might be referred to as "central bubbles".

Examples

			For n = 151, we have rotationally symmetrical T(151) as below, replacing 0 with "." for clarity:
  1 . . 1 . 1 1 1
   1 . 1 1 1 . .
    1 1 . . 1 .
     . 1 . 1 1
      1 1 1 .
       . . 1
        . 1
         1
At the center of the figure we see a CZT with s = 2, ringed by 1s, with k = 2. Since 151 is the first term of A334769, a(1) = 2.
For n = 599, we have a rotationally symmetrical T(599) with s = 4 and k = 2.
  1 . . 1 . 1 . 1 1 1
   1 . 1 1 1 1 1 . .
    1 1 . . . . 1 .
     . 1 . . . 1 1
      1 1 . . 1 .
       . 1 . 1 1
        1 1 1 .
         . . 1
          . 1
           1
Since A334769(4) = 599, a(4) = 4.
		

Crossrefs

Programs

  • Mathematica
    Block[{f, s = Rest[Import["https://oeis.org/A334556/b334556.txt", "Data"][[All, -1]] ]}, f[n_] := NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &]; Array[Block[{n = s[[#]]}, If[# == 0, Nothing, #] &@ FirstCase[MapIndexed[If[2 #2 > #3 + 1, Nothing, #1[[#2 ;; -#2]]] & @@ {#1, First[#2], Length@ #1} &, f[n][[1 ;; Ceiling[IntegerLength[#, 2]/(2 Sqrt[3])] + 3]] ], r_List /; FreeQ[r, 1] :> Length@ r] /. k_ /; MissingQ@ k -> 0] &, Lengths - 1, 2] ]