A334796 a(n) = (A070939(A334769(n)) - A334770(n))/3.
2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 4, 4, 4, 4, 2, 3, 3, 4, 4, 3, 3, 4, 4, 3, 5, 5, 5, 5, 3, 2, 4, 4, 4, 4, 2, 3, 5, 5, 5, 5, 5, 3, 5, 2, 5, 4, 5, 4, 4, 5, 4, 5, 2, 5, 3, 5, 6, 6, 6, 6, 3, 4, 5, 5, 4, 3, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 3, 4, 5
Offset: 1
Keywords
Examples
a(4) pertains to T(599), with A334770(4) = 4. (1 + A070939(599) - 4)/3 = (1 + 9 - 4)/3 = 6/3 = 2, thus a(4) = 2. (Diagram, replacing 0 with “.”): 1 . . 1 . 1 . 1 1 1 1 . 1 1 1 1 1 . . 1 1 . . . . 1 . . 1 . . . 1 1 1 1 . . 1 . . 1 . 1 1 1 1 1 . . . 1 . 1 1 a(11) pertains to T(2359), with A334770(11) = 3. (1 + A070939(2359) - 4)/3 = (1 + 11 - 3)/3 = 9/3 = 3, thus a(11) = 3. (Diagram): 1 . . 1 . . 1 1 . 1 1 1 1 . 1 1 . 1 . 1 1 . . 1 1 . 1 1 1 1 . 1 . . 1 1 . . . 1 1 1 1 . 1 . . 1 . . 1 1 1 . 1 1 . . . 1 1 . 1 . 1 . 1 1 1 1 1 . . . 1 . 1 1 From _Michael De Vlieger_, May 14 2020: (Start) Linear recurrences that produce XOR-triangles with frame length j (table may not be exhaustive): j LR Lower Upper ----------------------------------------------------- 2 (5, -4) {39, 151} {57, 223} 3 (17, -16) {543, 8607} {993, 15969} {1379, 22115} {1589, 25397} {1483, 23755} {1693, 27037} {2359, 37687} {3785, 60617} 4 (17, -16) {22243, 356067} {25525, 408501} {39047, 624775} {57625, 921881} {40679, 650983} {59257, 948089} {171475, 2743763} {208613, 3337957} {356067, 5697251} {408501, 6536117} ... (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Central zero-triangles in rotationally symmetrical XOR-Triangles, 2020.
- Michael De Vlieger, Diagram montage showing XOR-triangles for terms in certain linear recurrences and their bit-reversals, illustrating relations in their appearance, most significantly, constant frame width.
- Index entries for sequences related to binary expansion of n
- Index entries for sequences related to XOR-triangles
- Michael De Vlieger, Diagram montage showing the first dozen XOR-triangles exhibiting frame widths of 2, 3, 4, ..., 12 by row.
Programs
-
Mathematica
Block[{f, s = Rest[Import["https://oeis.org/A334556/b334556.txt", "Data"][[All, -1]] ]}, f[n_] := NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &]; Array[Block[{n = s[[#]]}, If[# == 0, Nothing, (1 + Floor@ Log2[n] - #)/3] &@ FirstCase[MapIndexed[If[2 #2 > #3 + 1, Nothing, #1[[#2 ;; -#2]]] & @@ {#1, First[#2], Length@ #1} &, f[n][[1 ;; Ceiling[IntegerLength[#, 2]/(2 Sqrt[3])] + 3]] ],r_List /; FreeQ[r, 1] :> Length@ r] /. k_ /; MissingQ@ k -> 0] &, Length@ s - 1, 2] ]
Comments