A334769 Numbers m that generate rotationally symmetrical XOR-triangles T(m) that have central triangles of zeros.
151, 233, 543, 599, 937, 993, 1379, 1483, 1589, 1693, 2359, 2391, 3753, 3785, 8607, 9559, 10707, 11547, 13029, 13869, 15017, 15969, 22115, 22243, 23627, 23755, 25397, 25525, 26909, 27037, 33151, 34591, 35535, 36015, 37687, 38231, 39047, 40679, 57625, 59257
Offset: 1
Keywords
Examples
For n = 151, we have rotationally symmetrical T(151) as below, replacing 0 with "." for clarity: 1 . . 1 . 1 1 1 1 . 1 1 1 . . 1 1 . . 1 . . 1 . 1 1 1 1 1 . . . 1 . 1 1 At the center of the figure we see a CZT with s = 2, ringed by 1s, with k = 2. Thus 151 is in the sequence. For n = 11, we have rotationally symmetrical T(11): 1 . 1 1 1 1 . . 1 1 Since there is no CZT, 11 is not in the sequence. For n = 91, we have rotationally symmetrical T(91): 1 . 1 1 . 1 1 1 1 . 1 1 . . 1 1 . 1 1 . 1 1 1 1 . . 1 1 This XOR-triangle has many bubbles but none in the center, so 91 is not in the sequence.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Central zero-triangles in rotationally symmetrical XOR-Triangles, 2020.
- Michael De Vlieger, Basic aspects of rotationally symmetrical XOR-triangles that have central zero triangles
- Michael De Vlieger, Diagram montage of XOR-triangles for terms 1 <= n <= 1000.
- Rémy Sigrist, C program for A334769K
- Index entries for sequences related to binary expansion of n
- Index entries for sequences related to XOR-triangles
Programs
-
C
See Links section.
-
Mathematica
Block[{s, t = Array[NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &] &, 2^18]}, s = Select[Range[Length@ t], Function[{n, h}, (Reverse /@ Transpose[MapIndexed[PadRight[#, h, -1] &, t[[n]] ]] /. -1 -> Nothing) == t[[n]]] @@ {#, IntegerLength[#, 2]} &]; Array[Block[{n = s[[#]]}, If[# == 0, Nothing, n] &@ FirstCase[MapIndexed[If[2 #2 > #3 + 1, Nothing, #1[[#2 ;; -#2]]] & @@ {#1, First[#2], Length@ #1} &, NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &][[1 ;; Ceiling[IntegerLength[#, 2]/(2 Sqrt[3])] + 3]] ], r_List /; FreeQ[r, 1] :> Length@ r] /. k_ /; MissingQ@ k -> 0] &, Length@ s - 1, 2] ]
Extensions
Data corrected by Rémy Sigrist, May 15 2020
Comments