cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334772 Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.

Original entry on oeis.org

2, 12, 66, 36, 576, 1168, 80, 2610, 17376, 16220, 150, 8520, 129800, 448800, 202416, 252, 22680, 659560, 5748750, 10861056, 2395540, 392, 52416, 2596608, 46412200, 241987500, 253940736, 27517568, 576, 109116, 8505728, 273322980, 3121135440, 9885006250, 5807161344, 310123764
Offset: 2

Views

Author

Andrew Howroyd, May 10 2020

Keywords

Comments

T(n,k) is divisible by n and 2*T(n,k) is divisible by n*k.

Examples

			Array begins:
==========================================================
n\k |        2          3            4              5
----|----------------------------------------------------
  2 |        2         12           36             80 ...
  3 |       66        576         2610           8520 ...
  4 |     1168      17376       129800         659560 ...
  5 |    16220     448800      5748750       46412200 ...
  6 |   202416   10861056    241987500     3121135440 ...
  7 |  2395540  253940736   9885006250   203933233280 ...
  8 | 27517568 5807161344 395426250000 13051880894720 ...
...
The T(2,3) = 12 permutations of 111222 with 2 local maxima are 112122, 112212 and their rotations.
The T(3,2) = 66 permutations of 112233 with 2 local maxima are 112323, 113223, 113232, 121233, 121332, 122133, 122313, 123213, 123123, 123132, 131322 and their rotations.
		

Crossrefs

Columns k=2..6 are A159716, A159722, A159728, A159734, A159737.

Programs

  • PARI
    T(n,k)={n*k*( (k^2 + 4*k + 1)^2*binomial(k+3,3)^(n-2) + 12*(k + 2)*(k+1)^(n-2) - 6*k*(k+5)*n*(k+1)^(n-2))/(2*(k + 5)^2)}

Formula

T(n,k) = n*k*( P(k,4)^(n-2) * P(k-2,2)^2 + 4*(Sum_{j=0..n-3} P(k-1,3) * P(k-2,2) * P(k,2)^j * P(k, 4)^(n-j-3)) + 4*(Sum_{j=0..n-4} (j + 1) * P(k-1,3)^2 * P(k,2)^j * P(k,4)^(n-j-4)) )/2 where P(n,k) = binomial(n+k-1, k-1).
T(n,k) = n*k*( (k^2 + 4*k + 1)^2*binomial(k+3, 3)^(n-2) + 12*(k + 2)*(k+1)^(n-2) - 6*k*(k+5)*n*(k+1)^(n-2))/(2*(k + 5)^2).