cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334802 Positive integers of the form x^4 - y^4 that have exactly 4 divisors.

Original entry on oeis.org

15, 65, 671, 3439, 12209, 102719, 113521, 178991, 246559, 515201, 1124111, 1342879, 2964961, 3940399, 9951391, 21254449, 27220159, 34209169, 45259649, 48986321, 70710641, 92110289, 93084991, 125620111, 131687681, 144402721, 201792079, 211782751, 276694241
Offset: 1

Views

Author

C. Kenneth Fan, May 12 2020

Keywords

Comments

If a(n) = pq, where p > q are both prime, then p is the hypotenuse and q is a leg of a primitive Pythagorean triple. (x^4-y^4 = (x^2+y^2)(x+y)(x-y), hence x-y=1 and x^2+y^2 and x+y are both prime. Note that x^2+y^2 can never be (x+y)^2 so a(n) is never the cube of a prime.)

Examples

			2^4 - 1^4 = 15 = 3*5 and (3, 4, 5) is a Pythagorean triple, so 15 is a term.
6^4 - 5^4 = 671 = 11*61 and (11, 60, 61) is a Pythagorean triple, so 671 is a term.
		

Crossrefs

Cf. A068501.
Intersection of A030513 and A147857.

Programs

  • Maple
    f:= proc(y) if isprime(2*y+1) and isprime(2*y^2 + 2*y+1) then (2*y+1)*(2*y^2+2*y+1) fi end proc:
    map(f, [$1..1000]); # Robert Israel, Jun 16 2020
  • Mathematica
    Select[(#^4 - (#-1)^4) & /@ Range[420], DivisorSigma[0, #] == 4 &] (* Giovanni Resta, May 12 2020 *)

Formula

a(n) = (b(n)+1)^4 - b(n)^4 with b(n)=A068501(n).
a(n) = A048161(n)*A067756(n).