A334802 Positive integers of the form x^4 - y^4 that have exactly 4 divisors.
15, 65, 671, 3439, 12209, 102719, 113521, 178991, 246559, 515201, 1124111, 1342879, 2964961, 3940399, 9951391, 21254449, 27220159, 34209169, 45259649, 48986321, 70710641, 92110289, 93084991, 125620111, 131687681, 144402721, 201792079, 211782751, 276694241
Offset: 1
Keywords
Examples
2^4 - 1^4 = 15 = 3*5 and (3, 4, 5) is a Pythagorean triple, so 15 is a term. 6^4 - 5^4 = 671 = 11*61 and (11, 60, 61) is a Pythagorean triple, so 671 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(y) if isprime(2*y+1) and isprime(2*y^2 + 2*y+1) then (2*y+1)*(2*y^2+2*y+1) fi end proc: map(f, [$1..1000]); # Robert Israel, Jun 16 2020
-
Mathematica
Select[(#^4 - (#-1)^4) & /@ Range[420], DivisorSigma[0, #] == 4 &] (* Giovanni Resta, May 12 2020 *)
Comments