cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: C. Kenneth Fan

C. Kenneth Fan's wiki page.

C. Kenneth Fan has authored 2 sequences.

A334802 Positive integers of the form x^4 - y^4 that have exactly 4 divisors.

Original entry on oeis.org

15, 65, 671, 3439, 12209, 102719, 113521, 178991, 246559, 515201, 1124111, 1342879, 2964961, 3940399, 9951391, 21254449, 27220159, 34209169, 45259649, 48986321, 70710641, 92110289, 93084991, 125620111, 131687681, 144402721, 201792079, 211782751, 276694241
Offset: 1

Author

C. Kenneth Fan, May 12 2020

Keywords

Comments

If a(n) = pq, where p > q are both prime, then p is the hypotenuse and q is a leg of a primitive Pythagorean triple. (x^4-y^4 = (x^2+y^2)(x+y)(x-y), hence x-y=1 and x^2+y^2 and x+y are both prime. Note that x^2+y^2 can never be (x+y)^2 so a(n) is never the cube of a prime.)

Examples

			2^4 - 1^4 = 15 = 3*5 and (3, 4, 5) is a Pythagorean triple, so 15 is a term.
6^4 - 5^4 = 671 = 11*61 and (11, 60, 61) is a Pythagorean triple, so 671 is a term.
		

Crossrefs

Cf. A068501.
Intersection of A030513 and A147857.

Programs

  • Maple
    f:= proc(y) if isprime(2*y+1) and isprime(2*y^2 + 2*y+1) then (2*y+1)*(2*y^2+2*y+1) fi end proc:
    map(f, [$1..1000]); # Robert Israel, Jun 16 2020
  • Mathematica
    Select[(#^4 - (#-1)^4) & /@ Range[420], DivisorSigma[0, #] == 4 &] (* Giovanni Resta, May 12 2020 *)

Formula

a(n) = (b(n)+1)^4 - b(n)^4 with b(n)=A068501(n).
a(n) = A048161(n)*A067756(n).

A007851 Number of elements w of the Weyl group D(n) such that the roots sent negative by w span an Abelian subalgebra of the Lie algebra.

Original entry on oeis.org

1, 4, 14, 48, 167, 593, 2144, 7864, 29171, 109173, 411501, 1560089, 5943199, 22732739, 87253604, 335897864, 1296447899, 5015206349, 19439895089, 75487384829, 293595204239, 1143532045499, 4459774977449, 17413705988873
Offset: 1

Author

C. Kenneth Fan [ ckfan(AT)MIT.EDU ]

Keywords

Programs

  • Mathematica
    Table[(n+3) CatalanNumber[n]/2-1,{n,30}] (* Harvey P. Dale, Oct 06 2017 *)

Formula

a(n) = (n+3)*C(n)/2 - 1, where C(n) is a Catalan number (see A000108).
D-finite with recurrence: -(n+1)*(3*n^2+n-12)*a(n) +(15*n^3+14*n^2-85*n+36)*a(n-1) -2*(2*n-3)*(3*n^2+7*n-8)*a(n-2)=0. - R. J. Mathar, Jun 11 2019