A335599 Sequence is limit_{k->oo} s_k, where s_k = s_{k-1}, s_{k-1}[k-1] + 2^(k-1), ..., s_{k-1}[end] + 2^(k-1) starting with s_0 = s_0[0..1] = 0,0.
0, 0, 1, 1, 2, 3, 3, 5, 5, 6, 7, 7, 9, 10, 11, 11, 13, 13, 14, 15, 15, 18, 19, 19, 21, 21, 22, 23, 23, 25, 26, 27, 27, 29, 29, 30, 31, 31, 35, 35, 37, 37, 38, 39, 39, 41, 42, 43, 43, 45, 45, 46, 47, 47, 50, 51, 51, 53, 53, 54, 55, 55, 57, 58, 59, 59, 61, 61
Offset: 0
Keywords
Links
- Kevin Ryde, PARI/GP code and explanation, quantity "b(n)".
Programs
-
Maple
s:= proc(n) option remember; `if`(n=0, [0, 0][], (l-> [l[], map(x-> x+2^(n-1), l[n..-1])[]][])([s(n-1)])) end: s(7); # gives 136 = A005126(7) terms; # Alois P. Heinz, Jul 04 2020
-
Mathematica
a[n_] := If[n == 0, 0, Module[{m = n, k = Floor@Log2[n]}, m -= k + 1; While[k >= 0, If[BitGet[m, k] == 0, m++; If[BitGet[m, k] == 1, Return[m-1]]]; k--]; m]]; Table[a[n], {n, 0, 67}] (* Jean-François Alcover, May 30 2022, after Kevin Ryde *)
-
PARI
a(n) = { if(n, my(k=logint(n,2)); n-=k+1; while(k>=0, if(!bittest(n,k), n++; if(bittest(n,k), return(n-1))); k--)); n; } \\ Kevin Ryde, Jul 05 2020
Formula
a(n) + bitcount(a(n)) + A334820(n) = n for n>=0.
Comments