A334832 Numbers whose squarefree part is congruent to 1 (mod 24).
1, 4, 9, 16, 25, 36, 49, 64, 73, 81, 97, 100, 121, 144, 145, 169, 193, 196, 217, 225, 241, 256, 265, 289, 292, 313, 324, 337, 361, 385, 388, 400, 409, 433, 441, 457, 481, 484, 505, 529, 553, 576, 577, 580, 601, 625, 649, 657, 673, 676, 697, 721, 729, 745, 769, 772, 784, 793, 817, 841
Offset: 1
Examples
The squarefree part of 26 is 26, which is congruent to 2 (mod 24), so 26 is not in the sequence. The squarefree part of 292 = 2^2 * 73 is 73, which is congruent to 1 (mod 24), so 292 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Quotient Group.
- Eric Weisstein's World of Mathematics, Right Transversal.
Crossrefs
Programs
-
Mathematica
Select[Range[850], Mod[Sqrt[#] /. (c_ : 1)*a_^(b_ : 0) :> (c*a^b)^2, 24] == 1 &] (* Michael De Vlieger, Jun 24 2020 *)
-
PARI
isok(m) = core(m) % 24 == 1; \\ Peter Munn, Jun 21 2020
-
Python
from sympy import integer_log def A334832(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum((x//(i<<(j<<1))-1)//24+1 for i in (9**k for k in range(integer_log(x,9)[0]+1)) for j in range((x//i>>1).bit_length()+1)) return bisection(f,n,n) # Chai Wah Wu, Mar 21 2025
Formula
{a(n)} = {n : n = k^2 * (24m + 1), k >= 1, m >= 0}.
Comments