cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A352272 Numbers whose squarefree part is congruent to 1 modulo 6.

Original entry on oeis.org

1, 4, 7, 9, 13, 16, 19, 25, 28, 31, 36, 37, 43, 49, 52, 55, 61, 63, 64, 67, 73, 76, 79, 81, 85, 91, 97, 100, 103, 109, 112, 115, 117, 121, 124, 127, 133, 139, 144, 145, 148, 151, 157, 163, 169, 171, 172, 175, 181, 187, 193, 196, 199, 205, 208, 211, 217, 220, 223, 225, 229
Offset: 1

Views

Author

Peter Munn, Mar 10 2022

Keywords

Comments

Numbers of the form 4^i * 9^j * (6k+1), i, j, k >= 0.
Closed under multiplication.
The sequence forms a subgroup of the positive integers under the commutative operation A059897(.,.), one of 8 subgroups of the form {k : A007913(k) == 1 (mod m)} - in each case m is a divisor of 24. A059897 has a relevance to squarefree parts that arises from the identity A007913(k*n) = A059897(A007913(k), A007913(n)), where A007913(n) is the squarefree part of n.
The subgroup has 8 cosets, which partition the positive integers as follows. For each i in {1, 5}, j in {1, 2, 3, 6} there is a coset {m^2 * (6k+i) * j : m >= 1, k >= 0}. See the table in the examples.
None of the 8 cosets have been entered into the database previously, but many subgroups of the quotient group (which are formed of certain combinations of cosets) are represented among earlier OEIS sequences, including 6 of the 7 subgroups of index 2 (which combine 4 cosets). This sequence can therefore be defined as the intersection of pairs or triples of these sequences in many combinations (see the cross-references). See also the table in the example section of A352273 (the coset that includes 5).

Examples

			The squarefree part of 9 is 1, which is congruent to 1 (mod 6), so 9 is in the sequence.
The squarefree part of 14 is 14, which is congruent to 2 (mod 6), so 14 is not in the sequence.
The squarefree part of 52 = 2^2 * 13 is 13, which is congruent to 1 (mod 6), so 52 is in the sequence.
The 8 cosets described in the initial comments (forming a partition of the positive integers) are shown as rows of the following table. The first half of the table corresponds to (6k+i) with i=1; the second half to i=5, with row 5 being A352273.
   1,  4,   7,   9,  13,  16,  19,  25,  28,  31,  36, ...
   2,  8,  14,  18,  26,  32,  38,  50,  56,  62,  72, ...
   3, 12,  21,  27,  39,  48,  57,  75,  84,  93, 108, ...
   6, 24,  42,  54,  78,  96, 114, 150, 168, 186, 216, ...
   5, 11,  17,  20,  23,  29,  35,  41,  44,  45,  47, ...
  10, 22,  34,  40,  46,  58,  70,  82,  88,  90,  94, ...
  15, 33,  51,  60,  69,  87, 105, 123, 132, 135, 141, ...
  30, 66, 102, 120, 138, 174, 210, 246, 264, 270, 282, ...
The product of two positive integers is in this sequence if and only if they are in the same coset. The asymptotic density of cosets (containing) 1 and 5 is 1/4; of cosets 2 and 10 is 1/8; of cosets 3 and 15 is 1/12; of cosets 6 and 30 is 1/24.
		

Crossrefs

Intersection of any 2 of A055047, A339690 and A352274.
Intersection of any 4 sets chosen from A003159, A007417, A026225, A036668, A189715 and A225837 (in most cases, only 3 sets are needed - specifically if the pairwise intersections of the 3 sets differ from each other).
Closure of A084089 under multiplication by 9.
Other subsequences: A000290\{0}, A016921, A229848 (apparently, with 55 the first difference).
A334832 lists equivalent sequences modulo other divisors of 24.

Programs

  • PARI
    isok(m) = core(m) % 6 == 1;
    
  • Python
    from itertools import count
    def A352272(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in count(0):
                i2 = 9**i
                if i2>x:
                    break
                for j in count(0,2):
                    k = i2<x:
                        break
                    c -= (x//k-1)//6+1
            return c
        return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025

Formula

{a(n) : n >= 1} = {m >= 1 : A007913(m) == 1 (mod 6)}.
{a(n) : n >= 1} = A334832 U A334832/7 U A334832/13 U A334832/19 where A334832/k denotes {A334832(m)/k : m >= 1, k divides A334832(m)}.
Using the same denotation, {a(n) : n >= 1} = A352273/5 = {A307151(A352273(m)) : m >= 1}.

A352273 Numbers whose squarefree part is congruent to 5 modulo 6.

Original entry on oeis.org

5, 11, 17, 20, 23, 29, 35, 41, 44, 45, 47, 53, 59, 65, 68, 71, 77, 80, 83, 89, 92, 95, 99, 101, 107, 113, 116, 119, 125, 131, 137, 140, 143, 149, 153, 155, 161, 164, 167, 173, 176, 179, 180, 185, 188, 191, 197, 203, 207, 209, 212, 215, 221, 227, 233, 236, 239, 245, 251
Offset: 1

Views

Author

Peter Munn, Mar 10 2022

Keywords

Comments

Numbers of the form 4^i * 9^j * (6k+5), i, j, k >= 0.
1/5 of each multiple of 5 in A352272.
The product of any two terms is in A352272.
The product of a term of this sequence and a term of A352272 is a term of this sequence.
The positive integers are usefully partitioned as {A352272, 2*A352272, 3*A352272, 6*A352272, {a(n)}, 2*{a(n)}, 3*{a(n)}, 6*{a(n)}}. There is a table in the example section giving sequences formed from unions of the parts.
The parts correspond to the cosets of A352272 considered as a subgroup of the positive integers under the operation A059897(.,.). Viewed another way, the parts correspond to the intersection of the integers with the cosets of the multiplicative subgroup of the positive rationals generated by the terms of A352272.
The asymptotic density of this sequence is 1/4. - Amiram Eldar, Apr 03 2022

Examples

			The squarefree part of 11 is 11, which is congruent to 5 (mod 6), so 11 is in the sequence.
The squarefree part of 15 is 15, which is congruent to 3 (mod 6), so 15 is not in the sequence.
The squarefree part of 20 = 2^2 * 5 is 5, which is congruent to 5 (mod 6), so 20 is in the sequence.
The table below lists OEIS sequences that are unions of the cosets described in the initial comments, and indicates the cosets included in each sequence. A352272 (as a subgroup) is denoted H, and this sequence (as a coset) is denoted H/5, in view of its terms being one fifth of the multiples of 5 in A352272.
             H    2H    3H    6H    H/5  2H/5  3H/5  6H/5
A003159      X           X           X           X
A036554            X           X           X           X
.
A007417      X     X                 X     X
A145204\{0}              X     X                 X     X
.
A026225      X           X                 X           X
A026179\{1}        X           X     X           X
.
A036668      X                 X     X                 X
A325424            X     X                 X     X
.
A055047      X                             X
A055048            X                 X
A055041                  X                             X
A055040                        X                 X
.
A189715      X                 X           X     X
A189716            X     X           X                 X
.
A225837      X     X     X     X
A225838                              X     X     X     X
.
A339690      X                       X
A329575                  X                       X
.
A352274      X           X
(The sequence groupings in the table start with the subgroup of the quotient group of H, followed by its cosets.)
		

Crossrefs

Intersection of any three of A003159, A007417, A189716 and A225838.
Intersection of A036668 and A055048.
Complement within A339690 of A352272.
Closure of A084088 under multiplication by 9.
Other subsequences: A033429\{0}, A016969.
Other sequences in the example table: A036554, A145204, A026179, A026225, A325424, A055040, A055041, A055047, A189715, A225837, A329575, A352274.

Programs

  • Mathematica
    q[n_] := Module[{e2, e3}, {e2, e3} = IntegerExponent[n, {2, 3}]; EvenQ[e2] && EvenQ[e3] && Mod[n/2^e2/3^e3, 6] == 5]; Select[Range[250], q] (* Amiram Eldar, Apr 03 2022 *)
  • PARI
    isok(m) = core(m) % 6 == 5;
    
  • Python
    from itertools import count
    def A352273(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in count(0):
                i2 = 9**i
                if i2>x: break
                for j in count(0,2):
                    k = i2<x: break
                    c -= (x//k-5)//6+1
            return c
        return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025

Formula

{a(n) : n >= 1} = {m >= 1 : A007913(m) == 5 (mod 6)}.
{a(n) : n >= 1} = A334832/5 U A334832/11 U A334832/17 U A334832/23 where A334832/k denotes {A334832(m)/k : m >= 1, k divides A334832(m)}.
Using the same notation, {a(n) : n >= 1} = A352272/5 = {A307151(A352272(m)) : m >= 1}.
{A225838(n) : n >= 1} = {m : m = a(j)*k, j >= 1, k divides 6}.

A233999 Values of n such that numbers of the form x^2+n*y^2 for some integers x, y cannot have prime factor of 7 raised to an odd power.

Original entry on oeis.org

1, 2, 4, 8, 9, 11, 15, 16, 18, 22, 23, 25, 29, 30, 32, 36, 37, 39, 43, 44, 46, 49, 50, 51, 53, 57, 58, 60, 64, 65, 67, 71, 72, 74, 78, 79, 81, 85, 86, 88, 92, 93, 95, 98, 99, 100, 102, 106, 107, 109, 113, 114, 116, 120, 121, 123, 127, 128, 130, 134, 135, 137, 141, 142, 144, 148, 149
Offset: 1

Views

Author

V. Raman, Dec 18 2013

Keywords

Comments

Equivalently, numbers of the form 49^n*(7m+1), 49^n*(7m+2), or 49^n*(7m+4). [Corrected by Charles R Greathouse IV, Jan 12 2017]
From Peter Munn, Feb 08 2024: (Start)
Numbers whose squarefree part is congruent to a (nonzero) quadratic residue modulo 7.
The integers in a subgroup of the positive rationals under multiplication. As such the sequence is closed under multiplication and - where the result is an integer - under division. The subgroup has index 4 and is generated by the primes congruent to a quadratic residue (1, 2 or 4) modulo 7, the square of 7, and 3 times the other primes; that is a generator corresponding to each prime: 2, 3*3, 3*5, 7^2, 11, 3*13, 3*17, 3*19, 23, 29, 3*31, ... .
(End)

Crossrefs

Numbers whose squarefree part is congruent to a coprime quadratic residue modulo k: A003159 (k=2), A055047 (k=3), A277549 (k=4), A352272 (k=6), A234000 (k=8), A334832 (k=24).
First differs from A047350 by including 49.

Programs

  • PARI
    is(n)=n/=49^valuation(n, 49); n%7==1||n%7==2||n%7==4 \\ Charles R Greathouse IV and V. Raman, Dec 19 2013
    
  • PARI
    is_A233999(n)=bittest(22,n/49^valuation(n, 49)%7) \\ - M. F. Hasler, Jan 02 2014
    
  • PARI
    list(lim)=my(v=List(),t,u); forstep(k=1,lim\=1,[1,2,4], listput(v,k)); for(e=1,logint(lim,49), u=49^e; for(i=1,#v, t=u*v[i]; if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jan 12 2017
    
  • Python
    from sympy import integer_log
    def A233999(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,49)[0]+1):
                m = x//49**i
                c -= (m-1)//7+(m-2)//7+(m-4)//7+3
            return c
        return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025

Formula

a(n) = 16n/7 + O(log n). - Charles R Greathouse IV, Jan 12 2017

A370268 Intersection of A189715 and A370267.

Original entry on oeis.org

1, 4, 6, 7, 9, 10, 15, 16, 22, 24, 25, 28, 31, 33, 36, 40, 42, 49, 54, 55, 58, 60, 63, 64, 70, 73, 79, 81, 87, 88, 90, 96, 97, 100, 103, 105, 106, 112, 118, 121, 124, 127, 132, 135, 144, 145, 150, 151, 154, 159, 160, 166, 168, 169, 175, 177, 186, 193, 196, 198, 199, 202, 214, 216, 217, 220, 223, 225, 231, 232, 240, 241, 247
Offset: 1

Views

Author

Peter Munn, Feb 13 2024

Keywords

Comments

A189715 and A370267 are closely related in that they may be generated by the same process, but starting from numbers of the form 6m+1 and 8m+1 respectively - see A370267 for details.
Independent definition: numbers with an even number of prime factors not of the form 3m+1 and an even number of prime factors not of the form 8m+-1 (counting repetitions).
The sequence starts with the first 72 nonzero numbers of the form x^2 + 6y^2 (see A002481). After the absence of 0, this sequence next differs from A002481 by including 247, 391, 442, ... . From these early intermittent differences, the densities of the two sequences diverge progressively, driven by the absence from A002481 of many of the squarefree composite numbers that are present here though their prime factors are not. (Both sequences are closed under multiplication.) Asymptotic densities are 1/4 and 0 respectively.
Likewise, if we list the even terms halved, we find a similar relationship to the nonzero terms of A002480. The first 66 terms match, then we find we have generated intermittent extra terms: 221, 299, 323, ... .
Numbers whose squarefree part is congruent to {1,7} mod 24, {10,22} mod 48, {15,33} mod 72, or {6,42} mod 144. (Each congruence describes a coset of A334832 under A059897(.,.) as described in A334832. This sequence corresponds to the subgroup of the quotient group generated by {6,7,10}.)

Crossrefs

Intersection of A189715 and A370267.
A002481\{0}, A334832 are subsequences.

Programs

  • PARI
    isok(k) = {c = core(k); c%24 == 1 || c%24 == 7 || c%48 == 10 || c%48 == 22 || c%72 == 15 || c%72 == 33 || c%144 == 6 || c%144 == 42}

Formula

{a(n) : n >= 1} = {A059897(i,j*k) : i in A334832, j in {1,7}, k in {1,6,10,15}}.
Showing 1-4 of 4 results.