cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A059897 Symmetric square array read by antidiagonals: A(n,k) is the product of all factors that occur in one, but not both, of the Fermi-Dirac factorizations of n and k.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 4, 6, 6, 4, 5, 8, 1, 8, 5, 6, 10, 12, 12, 10, 6, 7, 3, 15, 1, 15, 3, 7, 8, 14, 2, 20, 20, 2, 14, 8, 9, 4, 21, 24, 1, 24, 21, 4, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 5, 27, 2, 35, 1, 35, 2, 27, 5, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24, 33
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

Old name: Square array read by antidiagonals: T(i,j) = product prime(k)^(Ei(k) XOR Ej(k)) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; XOR is the bitwise operation on binary representation of the exponents.
Analogous to multiplication, with XOR replacing +.
From Peter Munn, Apr 01 2019: (Start)
(1) Defines an abelian group whose underlying set is the positive integers. (2) Every element is self-inverse. (3) For all n and k, A(n,k) is a divisor of n*k. (4) The terms of A050376, sometimes called Fermi-Dirac primes, form a minimal set of generators. In ordered form, it is the lexicographically earliest such set.
The unique factorization of positive integers into products of distinct terms of the group's lexicographically earliest minimal set of generators seems to follow from (1) (2) and (3).
From (1) and (2), every row and every column of the table is a self-inverse permutation of the positive integers. Rows/columns numbered by nonmembers of A050376 are compositions of earlier rows/columns.
It is a subgroup of the equivalent group over the nonzero integers, which has -1 as an additional generator.
As generated by A050376, the subgroup of even length words is A000379. The complementary set of odd length words is A000028.
The subgroup generated by A000040 (the primes) is A005117 (the squarefree numbers).
(End)
Considered as a binary operation, the result is (the squarefree part of the product of its operands) times the square of (the operation's result when applied to the square roots of the square parts of its operands). - Peter Munn, Mar 21 2022

Examples

			A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 XOR 3) * 3^(3 XOR 5) = 2^6 * 3^6 = 46656.
The top left 12 X 12 corner of the array:
   1,  2,  3,  4,  5,  6,  7,  8,   9,  10,  11,  12
   2,  1,  6,  8, 10,  3, 14,  4,  18,   5,  22,  24
   3,  6,  1, 12, 15,  2, 21, 24,  27,  30,  33,   4
   4,  8, 12,  1, 20, 24, 28,  2,  36,  40,  44,   3
   5, 10, 15, 20,  1, 30, 35, 40,  45,   2,  55,  60
   6,  3,  2, 24, 30,  1, 42, 12,  54,  15,  66,   8
   7, 14, 21, 28, 35, 42,  1, 56,  63,  70,  77,  84
   8,  4, 24,  2, 40, 12, 56,  1,  72,  20,  88,   6
   9, 18, 27, 36, 45, 54, 63, 72,   1,  90,  99, 108
  10,  5, 30, 40,  2, 15, 70, 20,  90,   1, 110, 120
  11, 22, 33, 44, 55, 66, 77, 88,  99, 110,   1, 132
  12, 24,  4,  3, 60,  8, 84,  6, 108, 120, 132,   1
From _Peter Munn_, Apr 04 2019: (Start)
The subgroup generated by {6,8,10}, the first three integers > 1 not in A050376, has the following table:
    1     6     8    10    12    15    20   120
    6     1    12    15     8    10   120    20
    8    12     1    20     6   120    10    15
   10    15    20     1   120     6     8    12
   12     8     6   120     1    20    15    10
   15    10   120     6    20     1    12     8
   20   120    10     8    15    12     1     6
  120    20    15    12    10     8     6     1
(End)
		

Crossrefs

Cf. A284567 (A000142 or A003418-analog for this operation).
Rows/columns: A073675 (2), A120229 (3), A120230 (4), A307151 (5), A307150 (6), A307266 (8), A307267 (24).
Particularly significant subgroups or cosets: A000028, A000379, A003159, A005117, A030229, A252895. See also the lists in A329050, A352273.
Sequences that relate this sequence to multiplication: A000188, A007913, A059895.

Programs

  • Mathematica
    a[i_, i_] = 1;
    a[i_, j_] := Module[{f1 = FactorInteger[i], f2 = FactorInteger[j], e1, e2}, e1[] = 0; Scan[(e1[#[[1]]] = #[[2]])&, f1]; e2[] = 0; Scan[(e2[#[[1]]] = #[[2]])&, f2]; Times @@ (#^BitXor[e1[#], e2[#]]& /@ Union[f1[[All, 1]], f2[[All, 1]]])];
    Table[a[i - j + 1, j], {i, 1, 15}, {j, 1, i}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)
  • PARI
    T(n,k) = {if (n==1, return (k)); if (k==1, return (n)); my(fn=factor(n), fk=factor(k)); vp = setunion(fn[,1]~, fk[,1]~); prod(i=1, #vp, vp[i]^(bitxor(valuation(n, vp[i]), valuation(k, vp[i]))));} \\ Michel Marcus, Apr 03 2019
    
  • PARI
    T(i, j) = {if(gcd(i, j) == 1, return(i * j)); if(i == j, return(1)); my(f = vecsort(concat(factor(i)~, factor(j)~)), t = 1, res = 1); while(t + 1 <= #f, if(f[1, t] == f[1, t+1], res *= f[1, t] ^ bitxor(f[2, t] , f[2, t+1]); t+=2; , res*= f[1, t]^f[2, t]; t++; ) ); if(t == #f, res *= f[1, #f] ^ f[2, #f]); res } \\ David A. Corneth, Apr 03 2019
    
  • PARI
    A059897(n,k) = if(n==k, 1, core(n*k) * A059897(core(n,1)[2],core(k,1)[2])^2) \\ Peter Munn, Mar 21 2022
  • Scheme
    (define (A059897 n) (A059897bi (A002260 n) (A004736 n)))
    (define (A059897bi a b) (let loop ((a a) (b b) (m 1)) (cond ((= 1 a) (* m b)) ((= 1 b) (* m a)) ((equal? (A020639 a) (A020639 b)) (loop (A028234 a) (A028234 b) (* m (expt (A020639 a) (A003987bi (A067029 a) (A067029 b)))))) ((< (A020639 a) (A020639 b)) (loop (/ a (A028233 a)) b (* m (A028233 a)))) (else (loop a (/ b (A028233 b)) (* m (A028233 b)))))))
    ;; Antti Karttunen, Apr 11 2017
    

Formula

For all x, y >= 1, A(x,y) * A059895(x,y)^2 = x*y. - Antti Karttunen, Apr 11 2017
From Peter Munn, Apr 01 2019: (Start)
A(n,1) = A(1,n) = n
A(n, A(m,k)) = A(A(n,m), k)
A(n,n) = 1
A(n,k) = A(k,n)
if i_1 <> i_2 then A(A050376(i_1), A050376(i_2)) = A050376(i_1) * A050376(i_2)
if A(n,k_1) = n * k_1 and A(n,k_2) = n * k_2 then A(n, A(k_1,k_2)) = n * A(k_1,k_2)
(End)
T(k, m) = k*m for coprime k and m. - David A. Corneth, Apr 03 2019
if A(n*m,m) = n, A(n*m,k) = A(n,k) * A(m,k) / k. - Peter Munn, Apr 04 2019
A(n,k) = A007913(n*k) * A(A000188(n), A000188(k))^2. - Peter Munn, Mar 21 2022

Extensions

New name from Peter Munn, Mar 21 2022

A036668 Hati numbers: of form 2^i*3^j*k, i+j even, (k,6)=1.

Original entry on oeis.org

1, 4, 5, 6, 7, 9, 11, 13, 16, 17, 19, 20, 23, 24, 25, 28, 29, 30, 31, 35, 36, 37, 41, 42, 43, 44, 45, 47, 49, 52, 53, 54, 55, 59, 61, 63, 64, 65, 66, 67, 68, 71, 73, 76, 77, 78, 79, 80, 81, 83, 85, 89, 91, 92, 95, 96, 97, 99, 100, 101, 102, 103, 107
Offset: 1

Views

Author

N. J. A. Sloane, Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)

Keywords

Comments

If n appears then 2n and 3n do not. - Benoit Cloitre, Jun 13 2002
Closed under multiplication. Each term is a product of a unique subset of {6} U A050376 \ {2,3}. - Peter Munn, Sep 14 2019

Crossrefs

Cf. A003159, A007310, A014601, A036667, A050376, A052330, A325424 (complement), A325498 (first differences), A373136 (characteristic function).
Positions of 0's in A182582.
Subsequences: A084087, A339690, A352272, A352273.

Programs

  • Maple
    N:= 1000: # to get all terms up to N
    A:= {seq(2^i,i=0..ilog2(N))}:
    Ae,Ao:= selectremove(issqr,A):
    Be:= map(t -> seq(t*9^j, j=0 .. floor(log[9](N/t))),Ae):
    Bo:= map(t -> seq(t*3*9^j,j=0..floor(log[9](N/(3*t)))),Ao):
    B:= Be union Bo:
    C1:= map(t -> seq(t*(6*i+1),i=0..floor((N/t -1)/6)),B):
    C2:= map(t -> seq(t*(6*i+5),i=0..floor((N/t - 5)/6)),B):
    A036668:= C1 union C2; # Robert Israel, May 09 2014
  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1,
    Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}],
    IntegerQ]]] &]], {150}]; a  (* A036668 *)
    (* Peter J. C. Moses, Apr 23 2019 *)
  • PARI
    twos(n) = {local(r,m);r=0;m=n;while(m%2==0,m=m/2;r++);r}
    threes(n) = {local(r,m);r=0;m=n;while(m%3==0,m=m/3;r++);r}
    isA036668(n) = (twos(n)+threes(n))%2==0 \\ Michael B. Porter, Mar 16 2010
    
  • PARI
    is(n)=(valuation(n,2)+valuation(n,3))%2==0 \\ Charles R Greathouse IV, Sep 10 2015
    
  • PARI
    list(lim)=my(v=List(),N);for(n=0,logint(lim\=1,3),N=if(n%2,2*3^n,3^n); while(N<=lim, forstep(k=N,lim,[4*N,2*N], listput(v,k)); N<<=2)); Set(v) \\ Charles R Greathouse IV, Sep 10 2015
    
  • Python
    from itertools import count
    def A036668(n):
        def f(x):
            c = n+x
            for i in range(x.bit_length()+1):
                i2 = 1<x:
                        break
                    m = x//k
                    c -= (m-1)//6+(m-5)//6+2
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Jan 28 2025

Formula

a(n) = 12/7 * n + O(log^2 n). - Charles R Greathouse IV, Sep 10 2015
{a(n)} = A052330({A014601(n)}), where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Sep 14 2019

Extensions

Offset changed by Chai Wah Wu, Jan 28 2025

A352272 Numbers whose squarefree part is congruent to 1 modulo 6.

Original entry on oeis.org

1, 4, 7, 9, 13, 16, 19, 25, 28, 31, 36, 37, 43, 49, 52, 55, 61, 63, 64, 67, 73, 76, 79, 81, 85, 91, 97, 100, 103, 109, 112, 115, 117, 121, 124, 127, 133, 139, 144, 145, 148, 151, 157, 163, 169, 171, 172, 175, 181, 187, 193, 196, 199, 205, 208, 211, 217, 220, 223, 225, 229
Offset: 1

Author

Peter Munn, Mar 10 2022

Keywords

Comments

Numbers of the form 4^i * 9^j * (6k+1), i, j, k >= 0.
Closed under multiplication.
The sequence forms a subgroup of the positive integers under the commutative operation A059897(.,.), one of 8 subgroups of the form {k : A007913(k) == 1 (mod m)} - in each case m is a divisor of 24. A059897 has a relevance to squarefree parts that arises from the identity A007913(k*n) = A059897(A007913(k), A007913(n)), where A007913(n) is the squarefree part of n.
The subgroup has 8 cosets, which partition the positive integers as follows. For each i in {1, 5}, j in {1, 2, 3, 6} there is a coset {m^2 * (6k+i) * j : m >= 1, k >= 0}. See the table in the examples.
None of the 8 cosets have been entered into the database previously, but many subgroups of the quotient group (which are formed of certain combinations of cosets) are represented among earlier OEIS sequences, including 6 of the 7 subgroups of index 2 (which combine 4 cosets). This sequence can therefore be defined as the intersection of pairs or triples of these sequences in many combinations (see the cross-references). See also the table in the example section of A352273 (the coset that includes 5).

Examples

			The squarefree part of 9 is 1, which is congruent to 1 (mod 6), so 9 is in the sequence.
The squarefree part of 14 is 14, which is congruent to 2 (mod 6), so 14 is not in the sequence.
The squarefree part of 52 = 2^2 * 13 is 13, which is congruent to 1 (mod 6), so 52 is in the sequence.
The 8 cosets described in the initial comments (forming a partition of the positive integers) are shown as rows of the following table. The first half of the table corresponds to (6k+i) with i=1; the second half to i=5, with row 5 being A352273.
   1,  4,   7,   9,  13,  16,  19,  25,  28,  31,  36, ...
   2,  8,  14,  18,  26,  32,  38,  50,  56,  62,  72, ...
   3, 12,  21,  27,  39,  48,  57,  75,  84,  93, 108, ...
   6, 24,  42,  54,  78,  96, 114, 150, 168, 186, 216, ...
   5, 11,  17,  20,  23,  29,  35,  41,  44,  45,  47, ...
  10, 22,  34,  40,  46,  58,  70,  82,  88,  90,  94, ...
  15, 33,  51,  60,  69,  87, 105, 123, 132, 135, 141, ...
  30, 66, 102, 120, 138, 174, 210, 246, 264, 270, 282, ...
The product of two positive integers is in this sequence if and only if they are in the same coset. The asymptotic density of cosets (containing) 1 and 5 is 1/4; of cosets 2 and 10 is 1/8; of cosets 3 and 15 is 1/12; of cosets 6 and 30 is 1/24.
		

Crossrefs

Intersection of any 2 of A055047, A339690 and A352274.
Intersection of any 4 sets chosen from A003159, A007417, A026225, A036668, A189715 and A225837 (in most cases, only 3 sets are needed - specifically if the pairwise intersections of the 3 sets differ from each other).
Closure of A084089 under multiplication by 9.
Other subsequences: A000290\{0}, A016921, A229848 (apparently, with 55 the first difference).
A334832 lists equivalent sequences modulo other divisors of 24.

Programs

  • PARI
    isok(m) = core(m) % 6 == 1;
    
  • Python
    from itertools import count
    def A352272(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in count(0):
                i2 = 9**i
                if i2>x:
                    break
                for j in count(0,2):
                    k = i2<x:
                        break
                    c -= (x//k-1)//6+1
            return c
        return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025

Formula

{a(n) : n >= 1} = {m >= 1 : A007913(m) == 1 (mod 6)}.
{a(n) : n >= 1} = A334832 U A334832/7 U A334832/13 U A334832/19 where A334832/k denotes {A334832(m)/k : m >= 1, k divides A334832(m)}.
Using the same denotation, {a(n) : n >= 1} = A352273/5 = {A307151(A352273(m)) : m >= 1}.

A084088 Numbers k such that k == 2 (mod 3) and the exponent of the highest power of 2 dividing k is even.

Original entry on oeis.org

5, 11, 17, 20, 23, 29, 35, 41, 44, 47, 53, 59, 65, 68, 71, 77, 80, 83, 89, 92, 95, 101, 107, 113, 116, 119, 125, 131, 137, 140, 143, 149, 155, 161, 164, 167, 173, 176, 179, 185, 188, 191, 197, 203, 209, 212, 215, 221, 227, 233, 236, 239, 245
Offset: 1

Author

Ralf Stephan, May 11 2003

Keywords

Comments

Numbers that are both in A016789 and A003159.
It seems that lim_{n->oo} a(n)/n = 9/2. [This is true. The asymptotic density of this sequence is 2/9. - Amiram Eldar, Jan 16 2022]
Positions of -1 in the expansion of Sum_{k>=0} x^2^k/(1+x^2^k+x^2^(k+1)) (A084091).

Crossrefs

Intersection of A016789 and A003159.
Cf. A084091.
A352273 without the multiples of 9.

Programs

  • Mathematica
    Select[3 * Range[0, 81] + 2, EvenQ[IntegerExponent[#, 2]] &] (* Amiram Eldar, Jan 16 2022 *)
  • PARI
    for(n=0,300,if(valuation(n,2)%2==0&&n%3==2,print1(n",")))
    
  • Python
    from itertools import count, islice
    def A084088_gen(): # generator of terms
        return filter(lambda n:(n&-n).bit_length()&1,count(2,3))
    A084088_list = list(islice(A084088_gen(),30)) # Chai Wah Wu, Jul 11 2022
Showing 1-4 of 4 results.