A334833 Total length squared of longest runs of 1's in all bitstrings of length n.
1, 6, 21, 61, 158, 386, 902, 2051, 4565, 10006, 21668, 46484, 98958, 209360, 440627, 923299, 1927456, 4010730, 8322242, 17226050, 35578192, 73339778, 150918130, 310073773, 636173403, 1303554560, 2667935114, 5454522188, 11140674850, 22733861902, 46352349432, 94435176992
Offset: 1
Keywords
Examples
a(3)=21 because for the 8(2^3) possible runs 0 is longest run of heads once, 1 four times, 2 two times and 3 once and 0*1+1*4+4*2+9*1 = 21.
Links
- Steven Finch, Variance of longest run duration in a random bitstring, arXiv:2005.12185 [math.CO], 2020.
Crossrefs
Cf. A119706.
Programs
-
Mathematica
nn = 10; Drop[Apply[Plus, Table[CoefficientList[Series[(2 n - 1) (1/(1 - 2 x) - (1 - x^n)/(1 - 2 x + x^(n + 1))), {x, 0, nn}], x], {n, 1, nn}]], 1]
Formula
O.g.f.: Sum_{k>=1} (2*k-1)*(1/(1-2*x) - (1-x^k)/(1-2*x+x^(k+1))).
Comments