cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334862 a(n) = A334097(n) - A064415(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 0, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 0, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 3, 1, 1, 1, 2, 2, 2, 1, 2, 3, 2, 1, 3, 2, 2, 2, 1, 1, 3, 0, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 3, 2, 1, 2, 1, 3, 1, 1, 2, 3, 2, 2, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, May 14 2020

Keywords

Comments

Completely additive because A064415 and A334097 are.

Crossrefs

Cf. A000079 (positions of zeros), A000244, A064415, A334097, A334861.

Programs

  • PARI
    A064415(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],f[k,2],f[k,2]*A064415(f[k,1]-1))); };
    A334097(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],f[k,2],f[k,2]*A334097(f[k,1]+1))); };
    A334862(n) = (A334097(n)-A064415(n));
    \\ Or alternatively as:
    A334862(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(A334097(f[k,1]+1)-A064415(f[k,1]-1)))); };

Formula

a(2) = 0, a(p) = A334097(p+1)-A064415(p-1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.
a(n) = A334097(n) - A064415(n).
a(3^k) = k for all k>= 0.