cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334872 Number of steps needed to reach either 1 or one of the "Fermi-Dirac primes" (A050376) when starting from n and iterating with A334870.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 2, 0, 0, 1, 0, 4, 2, 1, 0, 3, 0, 1, 2, 8, 0, 3, 0, 1, 2, 1, 4, 2, 0, 1, 2, 5, 0, 3, 0, 16, 4, 1, 0, 2, 0, 1, 2, 32, 0, 3, 4, 9, 2, 1, 0, 6, 0, 1, 8, 2, 4, 3, 0, 64, 2, 5, 0, 3, 0, 1, 2, 128, 8, 3, 0, 4, 0, 1, 0, 10, 4, 1, 2, 17, 0, 5, 8, 256, 2, 1, 4, 3, 0, 1, 16, 2, 0, 3, 0, 33, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2020

Keywords

Crossrefs

Cf. A050376 (positions of zeros after 1), A302777, A334859, A334865, A334870, A334871.

Programs

  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A302777(n) = A209229(isprimepower(n));
    A334870(n) = if(issquare(n),sqrtint(n),my(c=core(n), m=n); forprime(p=2, , if(!(c % p), m/=p; break, m*=p)); (m));
    A334872(n) = { my(s=0); while(n>1 && !A302777(n), s++; n = A334870(n)); (s); };
    
  • PARI
    \\ Much faster, A302777 like in above:
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A052126(n) = if(1==n,n,(n/vecmax(factor(n)[, 1])));
    A334872(n) = { my(s=0); while(n>1 && !A302777(n), if(issquarefree(n), return(s+A048675(A052126(n)))); if(issquare(n), s++; n = sqrtint(n), s += A048675(core(n)); n /= core(n))); (s); };

Formula

If n = 1 or A302777(n) = 1, a(n) = 0, otherwise a(n) = 1 + a(A334870(n)).
For all n >= 1, a(n) <= A334871(n).