A334876 Numbers m with the property that sigma(2^m+1)/(2^m+1) > sigma(2^k+1)/(2^k+1) for all k < m, where sigma is the sum of divisors function, A000203.
1, 3, 5, 9, 15, 45, 135, 315, 945
Offset: 1
Links
- Joshua Zelinsky, On the small prime factors of a non-deficient number, arXiv:2005.12118 [math.NT], 2020-2022.
Programs
-
Mathematica
r[n_] := DivisorSigma[1, 2^n+1]/(2^n + 1); seq = {}; rm = 1; Do[r1 = r[n]; If[r1 > rm, rm = r1; AppendTo[seq, n]], {n, 1, 50}]; seq (* Amiram Eldar, May 15 2020 *)
-
Sage
def h(n): return (sigma(n,1))/n def hchecker(k): s=0 for i in range(1,k): j=2^i+1 a=h(j) if a> s: print(i) s=a
Extensions
More terms from Amiram Eldar, May 13 2020, using A069061.
Comments