A334884 Order of the non-isomorphic groups PSL(m,q) [or PSL_m(q)] in increasing order as q runs through the prime powers.
6, 12, 60, 168, 360, 504, 660, 1092, 2448, 3420, 4080, 5616, 6072, 7800, 9828, 12180, 14880, 20160, 20160, 25308, 32736, 34440, 39732, 51888, 58800, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 262080, 265680, 285852, 352440, 372000, 456288
Offset: 1
Keywords
Examples
a(1) = #PSL(2,2) = (2^2-1)*2 = 6 and the 6 elements of PSL(2,2) that is isomorphic to S_3 are the 6 following 2 X 2 matrices with entries in F_2: (1 0) (1 1) (1 0) (0 1) (0 1) (1 1) (0 1) , (0 1) , (1 1) , (1 0) , (1 1) , (1 0). a(4) = #PSL(2,7) = (7^2-1)*7/gcd(2,6) = 168, and also, a(4) = #PSL(3,2) = (2^3-1)*(2^3-2)*2^2/gcd(3,1) = 168.
Links
- Wikipedia, Projective linear group
Crossrefs
Formula
#PSL(m,q) = (Product_{j=0..m-2} (q^m - q^j)) * q^(m-1) / gcd(m,q-1).
Comments