cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A334902 Infinitary practical numbers (A334901) whose number of divisors is not a power of 2.

Original entry on oeis.org

72, 360, 480, 504, 600, 672, 792, 864, 936, 1050, 1056, 1152, 1176, 1224, 1248, 1350, 1368, 1400, 1470, 1650, 1656, 1800, 1950, 1960, 2088, 2200, 2232, 2520, 2600, 2646, 2664, 2952, 3096, 3200, 3234, 3240, 3360, 3384, 3402, 3528, 3816, 3822, 3960, 4200, 4248, 4312
Offset: 1

Views

Author

Amiram Eldar, May 16 2020

Keywords

Comments

Practical numbers (A005153) whose number of divisors is a power of 2 (A036537) are also infinitary practical numbers (A334901), since all of their divisors are infinitary.
Up to 10^6 there are 34768 infinitary practical numbers; of them only 8858 are in this sequence.

Crossrefs

Programs

  • Mathematica
    bin[n_] := 2^(-1 + Position[Reverse @ IntegerDigits[n, 2], ?(# == 1 &)] // Flatten); f[p, e_] := p^bin[e]; icomp[n_] := Flatten[f @@@ FactorInteger[n]]; fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infPracQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 || (n > 1 && OddQ[n]), False, If[n == 1, True, r = Sort[icomp[n]]; Do[If[r[[i]] > 1 + isigma[prod], ok = False; Break[]]; prod = prod*r[[i]], {i, Length[r]}]; ok]]]; pow2Q[n_] := n/2^IntegerExponent[n, 2] == 1; Select[Range[4400], ! pow2Q[DivisorSigma[0, #]] && infPracQ[#] &]
Showing 1-1 of 1 results.