A334908 Area/6 of primitive Pythagorean triangles generated by {{2, 0}, {1, -1}}^n * {{2}, {1}}, for n >= 0.
1, 10, 220, 3080, 52976, 818720, 13333440, 211474560, 3398520576, 54257082880, 869067996160, 13897453373440, 222420341682176, 3558236809994240, 56935698394234880, 910939899548958720, 14575288593717067776, 233202615903456460800
Offset: 0
Examples
a(0) = 3*4/12 = 1 for the triangle (3, 4, 5).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..825
- V. E. Firstov, A Special Matrix Transformation Semigroup of Primitive Pairs and the Genealogy of Pythagorean Triples; Mathematical Notes, volume 84, number 2, August 2008, pages 263-279; Link of the page (for the Russian article).
- H. Lee Price, The Pythagorean Tree: A New Species, arXiv:0809.4324 [math.HO], 2008-2011
- R. Steiner, Spezielle Folge primitiver pythagoräischer Dreiecke, researchgate.net, 2020
- Index entries for linear recurrences with constant coefficients, signature (10,120,-320,-1024).
Programs
-
Magma
[(2^(2*n+1)*(2^(2*n+5) -3) +(-2)^n*(3*2^(2*n+3) -1))/81: n in [0..40]]; // G. C. Greubel, Feb 18 2023
-
Mathematica
Table[(2^(2*n+1)*(2^(2*n+5) -3) + (-2)^n*(3*2^(2*n+3) -1))/3^4, {n,0,40}]
-
SageMath
[(2^(2*n+1)*(2^(2*n+5) -3) +(-2)^n*(3*2^(2*n+3) -1))/81 for n in range(41)] # G. C. Greubel, Feb 18 2023
Formula
a(n) = ( 2^(4*n+6) - 3*2^(2*n+1) - 3*(-2)^(3*n+3) - (-2)^n )/3^4.
G.f.: 1 / ((1 + 2*x)*(1 - 4*x)*(1 + 8*x)*(1 - 16*x)). - Colin Barker, Jun 11 2020
E.g.f.: (1/81)*(24*exp(-8*x) - exp(-2*x) - 6*exp(4*x) + 64*exp(16*x)). - G. C. Greubel, Feb 18 2023
Comments