A334926 G.f.: Sum_{k>=1} x^(k*(2*k^2 + 1)/3) / (1 - x^(k*(2*k^2 + 1)/3)).
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Octahedral Number.
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Sum[x^(k (2 k^2 + 1)/3)/(1 - x^(k (2 k^2 + 1)/3)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A175577 = 1.278185... . - Amiram Eldar, Jan 02 2024
Comments