A334930 Numbers that generate rotationally symmetrical XOR-triangles featuring singleton zero bits in a hexagonal arrangement.
1, 11, 13, 91, 109, 731, 877, 5851, 7021, 46811, 56173, 374491, 449389, 2995931, 3595117, 23967451, 28760941, 191739611, 230087533, 1533916891, 1840700269, 12271335131, 14725602157, 98170681051, 117804817261, 785365448411, 942438538093, 6282923587291, 7539508304749
Offset: 1
Examples
Diagrams of a(2)-a(5), replacing “0” with “.” and “1” with “@” for clarity: a(2)=11 a(3)=13 @ . @ @ @ @ . @ @ @ . . @ @ . @ @ . @ @ . a(4) = 91 a(5) = 109 @ . @ @ . @ @ @ @ . @ @ . @ @ @ . @ @ . . @ @ . @ @ . @ @ . @ @ . @ @ . @ . @ @ @ @ . @ @ @ . . @ @ . @ @ . @ @
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..2215
- Michael De Vlieger, Diagram montage of XOR-triangles resulting from a(n) with 2 <= n <= 33.
- Michael De Vlieger, Central zero-triangles in rotationally symmetrical XOR-Triangles, 2020.
- Index entries for sequences related to binary expansion of n
- Index entries for sequences related to XOR-triangles
Programs
-
Mathematica
CoefficientList[Series[(1 + 11 x + 4 x^2 - 8 x^3)/(1 - 9 x^2 + 8 x^4), {x, 0, 28}], x] (* Generate a textual plot of XOR-triangle T(n) *) xortri[n_Integer] := TableForm@ MapIndexed[StringJoin[ConstantArray[" ", First@ #2 - 1], StringJoin @@ Riffle[Map[If[# == 0, "." (*0*), "@" (*1*)] &, #1], " "]] &, NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &]]
Formula
G.f.: (1 + 11*x + 4*x^2 - 8*x^3)/(1 - 9*x^2 + 8*x^4).
a(n) = - (4/7) - (1/7)*(-1)^(n-1) + ((6 + 10*sqrt(2))/7)*(2*sqrt(2))^(n-1) + ((6 - 10*sqrt(2))/7)*(-2*sqrt(2))^(n-1) - Alejandro J. Becerra Jr., May 31 2020
Comments