A334931 Numbers that generate rotationally symmetrical XOR-triangles with a pattern of zero-triangles of edge length 2, some of which are clipped to result in some singleton zeros at the edges.
151, 233, 1483, 1693, 10707, 13029, 644007, 941241, 317049751, 490370281, 3111314891, 3550957213, 22455577043, 27325461221, 1350581212071, 1973926386873, 664901519788951, 1028381017273577, 6524900247528907, 7446897021636253, 47092758308252115, 57305645652210405
Offset: 1
Examples
Diagrams of a(1)-a(6), replacing "0" with "." and "1" with "@" for clarity: a(1) = 151 (a(2) = 233 appears as a mirror image): @ . . @ . @ @ @ @ . @ @ @ . . @ @ . . @ . . @ . @ @ @ @ @ . . . @ . @ @ . a(3) = 1483 (a(4) = 1693 appears as a mirror image): @ . @ @ @ . . @ . @ @ @ @ . . @ . @ @ @ . . @ . @ @ @ . . @ @ @ @ . . @ . @ . . @ . @ @ @ . @ @ @ . . @ . . @ . @ . @ @ @ @ . . @ @ . a(5) = 10707 (a(6) = 13029 appears as a mirror image): @ . @ . . @ @ @ . @ . . @ @ @ @ @ . @ . . @ @ @ . @ . . . @ @ @ . @ . . @ @ @ . @ . . @ @ @ . @ . . @ @ . @ . . @ @ @ . . @ @ @ . @ . . @ @ . . @ @ @ . @ @ . @ . . @ @ @ @ @ . @ . . . @ @ @ . @ . . @ @ . . @ @
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1264
- Michael De Vlieger, Diagram montage of XOR-triangles resulting from a(n) with 1 <= n <= 32.
- Michael De Vlieger, Central zero-triangles in rotationally symmetrical XOR-Triangles, 2020.
- Index entries for sequences related to binary expansion of n
- Index entries for sequences related to XOR-triangles
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,2097153,0,0,0,0,0,0,0,-2097152).
Programs
-
Mathematica
Array[FromDigits[Flatten@ MapIndexed[ConstantArray[#2, #1] & @@ {#1, Mod[First[#2], 2]} &, If[EvenQ@ #1, Reverse@ #2, #2]], 2] & @@ {#1, Which[#2 == 1, PadRight[{1, 2}, 12 Ceiling[#1/8] - 7, {3, 2, 1, 1}], #2 == 2, PadRight[{1, 1}, 12 Ceiling[#1/8] - 6, {1, 1, 3, 2}]~Join~{2}, #2 == 3, PadRight[{1, 1}, 12 Ceiling[#1/8] - 4, {3, 1, 1, 2}]~Join~{2}, True, PadRight[{}, 12 Ceiling[#1/8] - 1, {1, 2, 3, 1}]]} & @@ {#, Ceiling[Mod[#, 8]/2]} &, 22] (* Generate a textual plot of XOR-triangle T(n) *) xortri[n_Integer] := TableForm@ MapIndexed[StringJoin[ConstantArray[" ", First@ #2 - 1], StringJoin @@ Riffle[Map[If[# == 0, "." (* 0 *), "@" (* 1 *)] &, #1], " "]] &, NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &]] (* From G.f.: *) Rest@ CoefficientList[Series[x (1654784 x^13 + 1359872 x^12 + 477184 x^11 + 1236992 x^10 + 1733632 x^9 + 379648 x^8 + 941241 x^7 + 644007 x^6 + 13029 x^5 + 10707 x^4 + 1693 x^3 + 1483 x^2 + 233 x + 151)/((1 - x^8) (1 - 2097152 x^8)), {x, 0, 22}], x] (* Michael De Vlieger, Mar 19 2021 *)
Formula
From Alejandro J. Becerra Jr., Mar 01 2021: (Start)
G.f.: x*(1654784*x^13 + 1359872*x^12 + 477184*x^11 + 1236992*x^10 + 1733632*x^9 + 379648*x^8 + 941241*x^7 + 644007*x^6 + 13029*x^5 + 10707*x^4 + 1693*x^3 + 1483*x^2 + 233*x + 151)/((1 - x^8)*(1 - 2097152*x^8)).
a(n) = 2097153*a(n-8) - 2097152*a(n-16). (End)
Comments