A334964 Numbers that are the sum of three coprime positive cubes.
3, 10, 17, 29, 36, 43, 55, 62, 66, 73, 92, 99, 118, 127, 129, 134, 141, 153, 155, 160, 179, 190, 197, 216, 218, 225, 244, 251, 253, 258, 277, 281, 307, 314, 342, 345, 349, 352, 359, 368, 371, 378, 397, 405, 408, 415, 433, 434, 466, 469, 471, 476, 495, 514, 521, 532, 540, 547, 557, 560, 566, 567
Offset: 1
Keywords
Examples
a(3)=17 is in the sequence because 17 = 1^3 + 2^3 + 2^3 with gcd(1,2,2)=1.
Links
Crossrefs
Cf. A202679.
Programs
-
Maple
N:= 1000: # for all terms <= N S:= {seq(seq(seq(x^3+y^3+z^3, z=select(t -> igcd(x,y,t)=1, [$y..floor((N-x^3-y^3)^(1/3))])), y=x..floor(((N-x^3)/2)^(1/3))), x=1..floor((N/3)^(1/3)))}: sort(convert(S, list));
-
PARI
list(lim)=my(v=List(),s,g,x3); lim\=1; if(lim<3, return([])); for(x=1,sqrtnint(lim\3,3), x3=x^3; for(y=x,sqrtnint((lim-x3)\2,3), s=x3+y^3; g=gcd(x,y); if(g>1, for(z=y,sqrtnint(lim-s,3), if(gcd(g,z)==1, listput(v,s+z^3))), for(z=y,sqrtnint(lim-s,3), listput(v,s+z^3))))); Set(v) \\ Charles R Greathouse IV, May 18 2020
Comments