cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334964 Numbers that are the sum of three coprime positive cubes.

Original entry on oeis.org

3, 10, 17, 29, 36, 43, 55, 62, 66, 73, 92, 99, 118, 127, 129, 134, 141, 153, 155, 160, 179, 190, 197, 216, 218, 225, 244, 251, 253, 258, 277, 281, 307, 314, 342, 345, 349, 352, 359, 368, 371, 378, 397, 405, 408, 415, 433, 434, 466, 469, 471, 476, 495, 514, 521, 532, 540, 547, 557, 560, 566, 567
Offset: 1

Views

Author

Robert Israel, May 17 2020

Keywords

Comments

The greatest common divisor of the three cubes must be 1, but they need not be pairwise coprime.

Examples

			a(3)=17 is in the sequence because 17 = 1^3 + 2^3 + 2^3 with gcd(1,2,2)=1.
		

Crossrefs

Cf. A202679.

Programs

  • Maple
    N:= 1000: # for all terms <= N
    S:= {seq(seq(seq(x^3+y^3+z^3, z=select(t -> igcd(x,y,t)=1, [$y..floor((N-x^3-y^3)^(1/3))])), y=x..floor(((N-x^3)/2)^(1/3))), x=1..floor((N/3)^(1/3)))}:
    sort(convert(S, list));
  • PARI
    list(lim)=my(v=List(),s,g,x3); lim\=1; if(lim<3, return([])); for(x=1,sqrtnint(lim\3,3), x3=x^3; for(y=x,sqrtnint((lim-x3)\2,3), s=x3+y^3; g=gcd(x,y); if(g>1, for(z=y,sqrtnint(lim-s,3), if(gcd(g,z)==1, listput(v,s+z^3))), for(z=y,sqrtnint(lim-s,3), listput(v,s+z^3))))); Set(v) \\ Charles R Greathouse IV, May 18 2020